This paper investigates numerical thermal fields and residual stresses induced by single-pass weld overlay (lap-weld) and girth welding (butt-weld) in lined pipe using Tungsten Inert Gas (TIG) welding. A distributed power density of the moving heat source based on Goldak's ellipsoid heat flux distribution is used in a Finite Element (FE) simulation of the lined pipe welding process. In addition, radiation and convection have been incorporated in heat transfer coefficient user-subroutines for the FE code ABAQUS. The 3-D FE model approach has been validated using previous experimental results published for butt-welds of similar sections of carbon-manganese C-Mn steel pipe lined with stainless steel. The FE model has been developed to determine the thermal isotherms and residual stress distributions from weld overlay and girth welding. The use of an inner layer known as a liner has a considerable influence on the thermal history and residual stress distributions. Furthermore, the influence of the weld overlay has been examined thermally and mechanically as it is a key factor that can affect the quality of lined pipe welding.
Welded lined cylindrical structures such as boilers, pressure vessels and transportation pipes are widely used in the oil and gas industries because an inexpensive outer layer is protected from corrosion by a thinner expensive layer, which is made of a corrosion resistant alloy (CRA). Welding in the lined pipe is of two different types, where the first one, so called weld overlay (lap-weld), is deployed to seal the liner with the outer pipe whilst the other one, known as girth welding (butt-weld), is deposited to join two specimens of lined pipe together. Therefore, the precise prediction of the thermal and residual stress fields due to the combination of two different types of circumferential welding is a major concern regarding welded lined pipes to avoid sudden failure during service. Six parametric studies have been conducted primarily to examine the influence of welding properties (weld overlay and girth welding materials), geometric parameters (weld overlay and liner) and welding process parameters (heat input) on the thermal and residual stress fields. All predicted results obtained from a 3-D FE model based on the ABAQUS code are validated against small-scale experimental results. Furthermore, in this study, the effect of mesh size has been investigated.
Nigella sativa (N. sativa) is traditionally used as an immune enhancer in different communities. The aim of this study was to evaluate the effect of N. sativa on immunity related parameters in young healthy subjects. This study was a double blind, randomized, placebo controlled clinical trial. Fifty-two healthy subjects (48 male and 4 female) 18-25 years old were enrolled in the study. They were randomly divided into four groups; the first received charcoal capsules and served as controls and the other three received 0.5, 1 g, and 2 g of powdered N. sativa capsules, respectively. Two blood samples were obtained from all participant, before initiation of the trial and at the end of the four weeks intervention. One sample was used for routine health screening by evaluating liver and renal functions as well as complete blood count and differential. The second sample was used to measure certain cytokines including; IL-1, IL-4, IL-6, IL-10, and TNF. A third and fourth samples were obtained from the last cohort of subjects before and after treatment; the third was used for measuring immunoglobulins and CD profile and the fourth for evaluating certain gene expressions (INF-γ, NF-κ-B, TNF-α, IL-1β, IL-13, IL-8, and IL-6). Only 1 g dose of N. sativa produced a significant elevation in total lymphocyte count, CD3+ and CD4+ counts. One gram N. sativa increased the absolute lymphocyte count from 1850±0.24 to 2170±0.26 (p=0.008), CD3+ from 1184.4±75.60 to 1424±114.51 (p=0.009), and CD4+ from 665.6±141.66 to 841±143.36 (p=0.002). This elevation in T cells was lost by increasing the dose of N. sativa to 2g. The rest of the parameters were not changed significantly in all doses. The results show a promising immunopotentiation effect of N. sativa by elevating helper T cells and the optimum dose for young age group seems to be 1 g.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.