This paper studies the optimal investment plan for a pension scheme with refund of contributions, stochastic salary and affine interest rate model. A modified model which allows for refund of contributions to death members’ families is considered. In this model, the fund managers invest in a risk free (treasury) and two risky assets (stock and zero coupon bond) such that the price of the risky assets are modelled by geometric Brownian motions and the risk free interest rate is of affine structure. Using the game theoretic approach, an extended Hamilton Jacobi Bellman (HJB) equation which is a system of non linear PDE is established. Furthermore, the extended HJB equation is then solved by change of variable and variable separation technique to obtain explicit solutions of the optimal investment plan for the three assets using mean variance utility function. Finally, theoretical analyses of the impact of some sensitive parameters on the optimal investment plan are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.