Cancer is uncontrolled cell growth in any part of the body. Early cancer detection aims to identify patients who exhibit symptoms early on in order to maximise their chances of a successful treatment. Cancer disease mortality is decreased through early detection and treatment. Numerous researchers proposed a variety of image processing and machine learning approaches for cancer detection. However, existing systems did not improve detection accuracy or efficiency. A Deep Convolutional Neural Learning Classifier Model based on the Least Mean Square Filterative Ricker Wavelet Transform (L-DCNLC) is proposed to address the aforementioned issues. The L-DCNLC Model's primary objective is to detect cancer earlier by utilising a fully connected max pooling deep convolutional network with increased accuracy and reduced time consumption. The fully connected max pooling deep convolutional network is composed of one input layer, three hidden layers, and one output layer. Initially, the input layer of the L-DCNLC Model considers the number of patient images in the database as input.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.