Outlier detection is an important data screening type. RIM is a mechanism of outlier detection that identifies the contribution of data points in a regression model. A BIC-based RIM is essentially a technique developed in this work to simultaneously detect influential data points and select optimal predictor variables. It is an addition to the body of existing literature in this area of study to both having an alternative to the AIC and Mallow's C p Statistic-based RIM as well as conditions of no influence, some sort of influence and perfectly single outlier data point in an entire data set which are proposed in this work. The method is implemented in R by an algorithm that iterates over all data points; deleting data points one at a time while computing BICs and selecting optimal predictors alongside RIMs. From the analyses done using evaporation data to compare the proposed method and the existing methods, the results show that the same data cases selected as having high influences by the two existing methods are also selected by the proposed method. The three methods show same performance; hence the relevance of the BIC-based RIM cannot be undermined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.