Motivation Monotonic bivariate classifiers can describe simple patterns in high-dimensional data that may not be discernible using only elementary linear decision boundaries. Such classifiers are relatively simple, easy to interpret, and do not require large amounts of data to be effective. A challenge is that finding optimal pairs of features from a vast number of possible pairs tends to be computationally intensive, limiting the applicability of these classifiers. Results We prove a simple mathematical inequality and show how it can be exploited for the faster identification of optimal feature combinations. Our empirical results suggest speedups of 10x--20x, relative to the previous, naive, approach in applications. This result thus greatly extends the range of possible applications for bivariate monotonic classifiers. In addition, we provide the first open-source code to identify optimal monotonic bivariate classifiers. Availability: https://gitlab.pasteur.fr/ofourque/mem_python
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.