BackgroundCooking temperature and consequently doneness of beef muscles are most important for the palatability and consumer acceptability. Current study assessed the response of mechanical texture of Hanwoo muscles as a function of cooking temperature at different ageing days. Six muscles (Psoas major (PM), Longissimus thoracics (LT), Gluteus medius (GM), Semimembranosus (SM), Biceps femoris (BF) and Triceps brachii (TB)) were collected from each 10 Hanwoo steers. Warner-Bratzler WB-shear force (WBSF) and texture profile analysis (TPA) texture profiles were determined after 3 or 21 days of chiller, and randomly assigned to four groups; non-cooked, cooked at 55, 70 or 85 °C.ResultsToughness of WBSF and TPA hardness of Hanwoo muscles were presence in the order of LT = PM = GM = SM < BF = TB (p < 0.001) for non-cooked raw muscle, and PM < LT = GM = SM < TB=BF (p < 0.001) for cooked meat aged for 3 days. WBSF linearly increased in 3 days aged meats after cooked at a higher temperature (P < 0.05). On the other hand, toughening of the muscles were significantly (P < 0.05) differed at various temperature when muscles were aged for 21 days. WBSF of PM and LT muscles were significantly increased at a higher cooking temperature, while other muscles (i.e., GM, SM, BF, TB) showed the lowest values at 70 °C. In the case of TPA hardness, the effect of cooking temperature was very less in the toughness of the muscle (P > 0.05).ConclusionTaken together, these findings clearly showed that the toughness of the muscle highly depends and varies upon the temperature and ageing of the muscle. Moreover, the effect of cooking temperature was very limited on aged muscles. The results mirror the importance of cooking temperature for objective measurements which ultimately estimate sensory tenderness and other quality traits.
Success in molecular breeding for better adapted varieties to environmental stresses depend upon the concerted efforts by various research including tissue culture, transformation, genetics and breeding. In order to optimize tissue culture conditions of Siberian wildrye grass, the effects of plant growth regulators on callus induction and plant regeneration were investigated with mature seeds. The highest callus induction frequency was observed when the mature seeds were cultured on MS medium supplemented with 5 mg/L 2,4-D. The highest plant regeneration frequency was observed when callus was transferred to N6 medium supplemented with 1 mg/L 2,4-D and 3 mg/L BA. Regenerated plants were grown normally when shoots were transplanted to the soil. A short tissue culture period and regeneration system would be beneficial for molecular breeding of Siberian wildrye grass by the production of transgenic plant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.