The 21st century has witnessed precipitous changes spanning from the way of life to the technologies that emerged. We have entered a nascent paradigm shift (industry 4.0) where science fictions have become science facts, and technology fusion is the main driver. Thus, ensuring that any advancement in technology reach and benefit all is the ideal opportunity for everyone. In this study, disruptive technologies of industry 4.0 were explored and quantified in terms of the number of their appearances in published literature. The study aimed at identifying industry 4.0 key technologies which have been ill-defined by previous researchers and to enumerate the required skills of industry 4.0. Comprehensive literature survey covering the field of engineering, production, and management was done in multidisciplinary databases: Google Scholar, Science Direct, Scopus, Sage, Taylor & Francis, and Emerald Insight. From the electronic survey, 35 disruptive technologies were quantified and 13 key technologies: Internet of Things, Big Data, 3D printing, Cloud computing, Autonomous robots, Virtual and Augmented reality, Cyber-physical system, Artificial intelligence, Smart sensors, Simulation, Nanotechnology, Drones, and Biotechnology were identified. Both technical and personal skills to be imparted into the human workforce for industry 4.0 were reported. The review identified the need to investigate the capability and the readiness of developing countries in adapting industry 4.0 in terms of the changes in the education systems and industrial manufacturing settings. This study proposes the need to address the integration of industry 4.0 concepts into the current education system.
Very well into the dawn of the fourth industrial revolution (industry 4.0), humankind can hardly distinguish between what is artificial and what is natural (e.g., man-made virus and natural virus). Thus, the level of discombobulation among people, companies, or countries is indeed unprecedented. The fact that industry 4.0 is explosively disrupting or retrofitting each and every industrial sector makes industry 4.0 the famous buzzword amongst researchers today. However, the insight of industry 4.0 disruption into the industrial sectors remains ill-defined in both academic and nonacademic literature. The present study aimed at identifying industry 4.0 neologisms, understanding the industry 4.0 disruption and illustrating the disruptive technology convergence in the major industrial sectors. A total of 99 neologisms of industry 4.0 were identified. Industry 4.0 disruption in the education industry (education 4.0), energy industry (energy 4.0), agriculture industry (agriculture 4.0), healthcare industry (healthcare 4.0), and logistics industry (logistics 4.0) was described. The convergence of 12 disruptive technologies including 3D printing, artificial intelligence, augmented reality, big data, blockchain, cloud computing, drones, Internet of Things, nanotechnology, robotics, simulation, and synthetic biology in agriculture, healthcare, and logistics industries was illustrated. The study divulged the need for extensive research to expand the application areas of the disruptive technologies in the industrial sectors.
Snakebite envenomation is a serious public health concern in rural areas of Uganda. Snakebites are poorly documented in Uganda because most occur in rural settings where traditional therapists end up being the first-line defense for treatment. Ethnobotanical surveys in Uganda have reported that some plants are used to antagonize the activity of various snake venoms. This review was sought to identify antivenin plants in Uganda and some pharmacological evidence supporting their use. A literature survey done in multidisciplinary databases revealed that 77 plant species belonging to 65 genera and 42 families are used for the treatment of snakebites in Uganda. The majority of these species belong to family Fabaceae (31%), Euphorbiaceae (14%), Asteraceae (12%), Amaryllidaceae (10%) and Solanaceae (10%). The main growth habit of the species is shrubs (41%), trees (33%) and herbs (18%). Antivenin extracts are usually prepared from roots (54%) and leaves (23%) through decoctions, infusions, powders, and juices, and are administered orally (67%) or applied topically (17%). The most frequently encountered species were Allium cepa, Carica papaya, Securidaca longipedunculata, Harrisonia abyssinica, and Nicotiana tabacum. Species with global reports of tested antivenom activity included Allium cepa, Allium sativum, Basella alba, Capparis tomentosa, Carica papaya, Cassia occidentalis, Jatropa carcus, Vernonia cinereal, Bidens pilosa, Hoslundia opposita, Maytensus senegalensis, Securinega virosa, and Solanum incanum. There is need to identify and evaluate the antivenom compounds in the claimed plants.
The current competitiveness of garment manufacturing industries is highly dependent on ability to improve efficiency and effectiveness of resource utilization through proper application of industrial engineering techniques such as line balancing and time study. However, very few apparel industries have comprehended industrial engineering function due to little knowledge on practical application of industrial engineering techniques. The present study aimed at balancing a trouser assembly line using the ranked positional weight technique to increase the line efficiency as well as minimize the number of workstations without violating the constraints: precedence relations, cycle time, and resource type. The empirical study was conducted at Southern Range Nyanza Limited (NYTIL) garment manufacturing facility to demonstrate the practical application of ranked positional weight line balancing technique. Results showed that ranked positional weight method is suitable only for assembly line balancing with no constraint on the resource. However, most complex garment assembly lines consist of a number of different machine types rendering ranked positional weight method practically ineffective for improving line efficiency of a complex garment assembly line. Therefore, profound line balancing using simulation-based optimization to improve the line efficiency of complex garment assembly line should be investigated. K E Y W O R D S assembly line, heuristic line balancing, line efficiency, performance indicators, ranked positional weight, resource constraints
Snakebite envenomation, cognized as a neglected tropical disease, is a dread public health concern with the most susceptible groups being herdsmen, the elderly, active farmers, hunters, fishers, firewood collectors, 10 to 14-year old working children and individuals with limited access to education and health care. Snakebites are fragmentarily documented in Uganda primarily because most occur in rural settings where traditional therapists end up being the first line defence for treatment. Ethnobotanical surveys in Uganda have unveiled that some plants are used to antagonize the activity of various snake venoms. This review was sought to compile the sporadic information on the vegetal species reported as antivenins in Uganda. Electronic data indicate that no study entirely reported on antivenin plants in Uganda. A total of 77 plant species belonging to 65 genera, distributed among 42 botanical families claimed as antiophidic in Uganda are used for treatment of snakebites. Majority of these species belong to family Fabaceae (30.9%), Euphorbiaceae (14.3%), Asteraceae (11.9%), Amaryllidaceae (9.5%) and Solanaceae (9.5%). The antiophidic species listed are shrubs (40.5%), trees (32.9%) and herbs (17.7%), usually found in the wild and uncultivated. Antivenin extracts are primarily prepared from roots and leaves, through decoctions, infusions, powders and juices and administered orally or topically. The most frequently encountered therapeutically important species are Allium cepa L., Carica papaya L., Securidaca longipedunculata Fres., Harrisonia abyssinica Oliv. and Nicotiana tabacum L. Baseline epidemiological data on snake envenomation and antivenin plants in Uganda remain incomplete due to inadequate research and diverse ethnic groups in the country. There is a dire need to isolate and characterize the bioactive compounds in the claimed plants to enable their adroit utilization in handling the plague of snake envenomation. More baseline data should be collected on snake ecology and human behaviour as well as antivenin plants in Uganda. Indigenous knowledge on the use of plant preparations in traditional medicine in Uganda is humongous, but if this is not quickly researched and appropriately documented, indications as to the usefulness of this vegetal treasure house will be lost in the not so distant future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.