Cyclin proteins, associated to cyclin-dependent kinases (CDKs), play fundamental roles in cell cycle control as they constitute a very important driving force to allow cell cycle progression. D-type cyclins (CycDs) are important both for interpreting external mitogenic signals and in the control of the G1 phase. The maize (Zea mays) genome appears to contain at least 17 different CycD genes, and they fall into the subgroups previously described for other plants. Maize CycDs have been named according to identity percentages of the corresponding orthologs in rice and Arabidopsis. In silico analysis confirmed the presence of characteristic cyclin domains in each maize CycD gene and showed that their genomic organization is similar to their orthologs in rice and Arabidopsis. The expression of maize CycD genes was followed in seeds, during germination in the presence/absence of exogenously added hormones, and also in different plantlet tissues (mesocotyl, root tips and first leaf). Most cyclins were expressed in germinating seeds and at least in one of the plantlet tissues tested; almost all of the detected cyclins show an accumulating pattern of mRNA along germination (0-24 h) and higher levels in root tissue. Interestingly, some cyclins show high levels in non-proliferating tissues as leaf. Addition of auxins or cytokinins does not seem to importantly modify transcript levels; on the other hand, addition of abscisic acid repressed the expression of several cyclins. The role of each CycD during germination and plant growth and its interaction with other cell cycle proteins becomes a topic of the highest interest.
Transgenic plants have been employed successfully as a low-cost system for the production of therapeutically valuable proteins, including antibodies, antigens and hormones. Here, we report the expression of the fusion (F) gene of the Newcastle disease virus (NDV) in transgenic maize plants. The expression of the transgene, driven by the maize ubiquitin promoter, caused accumulation of the F protein in maize kernels. The presence of the transgene was verified by Southern and western blots. Feeding chickens with kernels containing the F protein induced the production of antibodies, which conferred protection against a viral challenge. This protection was comparable to that conferred by a commercial vaccine. Possible uses of this plant-based F protein as a potential mucosal vaccine are discussed.
The species<em> Opuntia ficus-indica</em> is affected by pests and diseases, one of the most important of these being golden spot. The latter has been reported in various countries, including Mexico. Symptoms similar to those of golden spot in <em>O. ficus-indica</em> have been observed in the xoconostle crop (<em>Opuntia matudae</em> Scheinvar, cv. Rosa). The objective of this study was to isolate and identify the causative agent that causes the symptoms, which resembled those of the disease described as golden spot in <em>O. ficus-indica</em>. Simple random sampling in the field (10 plots) was carried out on xoconostle plants that presented the described symptoms. Slices of diseased plant tissue were cut and placed in Petri plates with PDA medium. Compliance with Koch’s postulates showed that the isolated (one aislated) of <em>Alternaria</em> sp. obtained from the field samples colonized the cladodes after inoculations in the greenhouse. Through taxonomic keys, <em>Alternaria</em> sp. was identified as the causative microorganism. Molecular characterization of the isolated <em>Alternaria</em> sp. was identified as <em>Alternaria</em> <em>alternata</em>. This is the first report worldwide of <em>Alternaria alternata</em> as the causal agent of golden spot in a xoconostle crop.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.