Summary: The effect of peroxide functionalization of carbon nanofibers (CNF) on the physical and mechanical properties of polystyrene (PS)–CNF nanocomposites prepared via melt mixing was studied. The CNF functionalization was evidenced by Raman spectroscopy, comparing the ratio of peaks at 1 371 and at 1 590 cm−1 (peaks related to the disordered sp3‐hybridized carbon atom and to the graphitic structure of the sp2‐hybridized carbon atoms, respectively). The variation of the storage (E′) and tensile modulus (E) of the PS–CNF composites as a function of the untreated and peroxide treated CNF concentration were evaluated. Three different peroxide concentrations were used for treating the CNF. It was found that both E′ and E increase with CNF concentration and, in addition, increase further with the peroxide treated CNFs. Nonetheless, it was found that the greater the peroxide concentration used in treating the CNF, the greater the PS degradation via free radical attack on the polymer chain, with the corresponding negative effect on the storage and tensile modulus. Dispersion of the CNF was assessed using scanning and optical microscopy, and the positive effect of the peroxide treatment on the dispersion of the CNF is evidenced.Tensile stress‐strain behavior of PS/CNF nanocomposites.magnified imageTensile stress‐strain behavior of PS/CNF nanocomposites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.