Aberrant pro-survival signaling is a hallmark of cancer cells, but the response to chemotherapy is poorly understood. In this study, we investigate the initial signaling response to standard induction chemotherapy in a cohort of 32 acute myeloid leukemia (AML) patients, using 36-dimensional mass cytometry. Through supervised and unsupervised machine learning approaches, we find that reduction of extracellular-signal-regulated kinase (ERK) 1/2 and p38 mitogen-activated protein kinase (MAPK) phosphorylation in the myeloid cell compartment 24 h post-chemotherapy is a significant predictor of patient 5-year overall survival in this cohort. Validation by RNA sequencing shows induction of MAPK target gene expression in patients with high phospho-ERK1/2 24 h post-chemotherapy, while proteomics confirm an increase of the p38 prime target MAPK activated protein kinase 2 (MAPKAPK2). In this study, we demonstrate that mass cytometry can be a valuable tool for early response evaluation in AML and elucidate the potential of functional signaling analyses in precision oncology diagnostics.
We describe here a simple and efficient antibody titration approach for cell‐surface markers and intracellular cell signaling targets for mass cytometry. The iterative approach builds upon a well‐characterized backbone panel of antibodies and analysis using bioinformatic tools such as SPADE. Healthy peripheral blood and bone marrow cells are stained with a pre‐optimized “backbone” antibody panel in addition to the progressively diluted (titrated) antibodies. Clustering based on the backbone panel enables the titration of each antibody against a rich hematopoietic background and assures that nonspecific binding and signal spillover can be quantified accurately. Using a slightly expanded backbone panel, antibodies quantifying changes in transcription factors and phosphorylated antigens are titrated on ex vivo stimulated cells to optimize sensitivity and evaluate baseline expression. Based on this information, complex panels of antibodies can be thoroughly optimized for use on healthy whole blood and bone marrow and are easily adaptable to the investigation of samples from for example clinical studies. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Background: A fundamental hallmark of cancer cells is their ability to sustain proliferative signaling and cell survival, reflected in a cellular chemotherapy response that is poorly understood. We questioned whether chemotherapy modulated phospho-signaling at 4 and 24 h in vivo could provide information about long-term survival in acute myeloid leukemia (AML), and if the signaling response to therapy was more informative than analysis at time of diagnosis. Methods: Peripheral blood was collected from 32 younger AML patients (age 16-74 years), before, 4- and 24 hours after start of induction chemotherapy. Samples were analyzed by 36-dimensional mass cytometry for assessment of alterations in immunophenotypes and intracellular signaling using unsupervised and supervised machine learning approaches. Results were validated by RNA sequencing and mass spectrometry proteomics (Super SILAC). Targeted sequencing was used to characterize patient samples for recurrent AML mutations. Drug sensitivity and resistance testing ex vivo was compared to activation of relevant signal transduction pathways and mutational profile. Findings: 5-year patient survival was accurately predicted in the leukemic cell population at 24 hours after therapy onset by phospho-proteins p-ERK1/2 (T202/Y204) and p-p38 (T180/Y182). RNA sequencing showed induction of MAPK target gene expression and the AP-1 transcription complex in patients with high p-ERK1/2. Super-SILAC proteomics confirmed an increase in the abundance of p38 prime target MAPKAPK2(MK2) 24 hours after start of induction therapy. Ex vivo drug sensitivity testing demonstrated high sensitivity to MEK inhibitors in the patient cells with high p-ERK1/2 measured at diagnosis or 24 hours after start of chemotherapy. Interpretation: Early single cell signaling response to chemotherapy provided precise prognostic information independent of stratification by genetics. We propose that early functional measurement of chemotherapy-potentiated MAPK pathway signaling could identify non-responders to intensive chemotherapy allowing precise treatment adjustment.
Purpose: The p53 protein and its post-translational modifications are distinctly expressed in various normal cell types and malignant cells and are usually detected by immunohistochemistry and flow cytometry in contemporary diagnostics. Here, we describe an approach for simultaneous multiparameter detection of p53, its post-translational modifications and p53 pathway-related signaling proteins in single cells using mass cytometry. Method: We conjugated p53-specific antibodies to metal tags for detection by mass cytometry, allowing the detection of proteins and their post-translational modifications in single cells. We provide an overview of the antibody validation process using relevant biological controls, including cell lines treated in vitro with a stimulus (irradiation) known to induce changes in the expression level of p53. Finally, we present the potential of the method through investigation of primary samples from leukemia patients with distinct TP53 mutational status. Results: The p53 protein can be detected in cell lines and in primary samples by mass cytometry. By combining antibodies for p53-related signaling proteins with a surface marker panel, we show that mass cytometry can be used to decipher the single cell p53 signaling pathway in heterogeneous patient samples. Conclusion: Single cell profiling by mass cytometry allows the investigation of the p53 functionality through examination of relevant downstream signaling proteins in normal and malignant cells. Our work illustrates a novel approach for single cell profiling of p53.
Take home messagesMass cytometry is a research tool that allows sample barcoding and detection of more than 40 single cell parameters, theoretically over 100, exceeding the current limits of conventional flow cytometry. Simultaneous single cell investigation of composite immunophenotypes and intracellular signaling proteins, combined with scalability for detection of gene expression and mutations, provide a unique insight in blood and bone marrow cell populations when evaluating response to conventional and novel therapies. Early evaluation of treatment response by mass cytometry can potentially distinguish therapy responders from non-responders at the level of minute cell populations and leukemic clones, allowing identification of actionable targets for adjuvant therapy and prevention of disease relapse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.