The allelic and haplotypic diversity of the HLA-A, HLA-B, and HLA-C loci was investigated in 852 subjects from five sub-Saharan populations from Kenya (Nandi and Luo), Mali (Dogon), Uganda, and Zambia. Distributions of genotypes at all loci and in all populations fit Hardy-Weinberg equilibrium expectations. There was not a single allele predominant at any of the loci in these populations, with the exception of A*3002 [allele frequency (AF) = 0.233] in Zambians and Cw*1601 (AF = 0.283) in Malians. This distribution was consistent with balancing selection for all class I loci in all populations, which was evidenced by the homozygosity F statistic that was less than that expected under neutrality. Only in the A locus in Zambians and the C locus in Malians, the AF distribution was very close to neutrality expectations. There were six instances in which there were significant deviations of allele distributions from neutrality in the direction of balancing selection. All allelic lineages from each of the class I loci were found in all the African populations. Several alleles of these loci have intermediate frequencies (AF = 0.020-0.150) and seem to appear only in the African populations. Most of these alleles are widely distributed in the African continent and their origin may predate the separation of linguistic groups. In contrast to native American and other populations, the African populations do not seem to show extensive allelic diversification within lineages, with the exception of the groups of alleles A*02, A*30, B*57, and B*58. The alleles of human leukocyte antigen (HLA)-B are in strong linkage disequilibrium (LD) with alleles of the C locus, and the sets of B/C haplotypes are found in several populations. The associations between A alleles with C-blocks are weaker, and only a few A/B/C haplotypes (A*0201-B*4501-Cw*1601; A*2301-B*1503-Cw*0202; A*7401-B* 1503-Cw*0202; A*2902-B*4201-Cw*1701; A*3001-B*4201-Cw*1701; and A*3601-B*5301-Cw*0401) are found in multiple populations with intermediate frequencies [haplotype frequency (HF) = 0.010-0.100]. The strength of the LD associations between alleles of HLA-A and HLA-B loci and those of HLA-B and HLA-C loci was on average of the same or higher magnitude as those observed in other non-African populations for the same pairs of loci. Comparison of the genetic distances measured by the distribution of alleles at the HLA class I loci in the sub-Saharan populations included in this and other studies indicate that the Luo population from western Kenya has the closest distance with virtually all sub-Saharan population so far studied for HLA-A, a finding consistent with the putative origin of modern humans in East Africa. In all African populations, the genetic distances between each other are greater than those observed between European populations. The remarkable current allelic and haplotypic diversity in the HLA system as well as their variable distribution in different sub-Saharan populations is probably the result of evolutionary forces and environments that have acte...
Perennial and intense malaria transmission (holoendemic malaria) and Epstein-Barr virus (EBV) infection are 2 cofactors in the pathogenesis of endemic Burkitt lymphoma (eBL). In the present study, we compared EBV loads in children living in 2 regions of Kenya with differing malaria transmission intensities: Kisumu District, where malaria transmission is holoendemic, and Nandi District, where malaria transmission is sporadic. For comparison, blood samples were also obtained from US adults, Kenyan adults, and patients with eBL. Extraction of DNA from blood and quantification by polymerase chain reaction give an EBV load estimate that reflects the number of EBV-infected B cells. We observed a significant linear trend in mean EBV load, with the lowest EBV load detected in US adults and increasing EBV loads detected in Kenyan adults, Nandi children, Kisumu children, and patients with eBL, respectively. In addition, EBV loads were significantly higher in Kisumu children 1-4 years of age than in Nandi children of the same age. Our results support the hypothesis that repeated malaria infections in very young children modulate the persistence of EBV and increase the risk for the development of eBL.
Maternal plasma 25-hydroxyvitamin D (25(OH)D) status and its association with pregnancy outcomes in malaria holoendemic regions of sub-Saharan Africa is poorly defined. We examined this association and any potential interaction with malaria and helminth infections in an ongoing pregnancy cohort study in Kenya. The association of maternal plasma 25(OH)D status with pregnancy outcomes and infant anthropometric measurements at birth was determined in a subset of women (n = 63). Binomial and linear regression analyses were used to examine associations between maternal plasma 25(OH)D and adverse pregnancy outcomes. Fifty-one percent of the women had insufficient (<75 nmol/L) and 21% had deficient (<50 nmol/L) plasma 25(OH)D concentration at enrollment. At birth, 74.4% of the infants had insufficient and 30% had deficient plasma 25(OH)D concentrations, measured in cord blood. Multivariate analysis controlling for maternal age and body mass index (BMI) at enrollment and gestational age at delivery found that deficient plasma 25(OH)D levels were associated with a four-fold higher risk of stunting in neonates (p = 0.04). These findings add to the existing literature about vitamin D and its association with linear growth in resource-limited settings, though randomized clinical trials are needed to establish causation.
h Over 35% of children in a region of malaria endemicity are infected with Epstein-Barr virus (EBV) by 6 months of age. This susceptibility may be linked to impaired transplacental transfer of antibodies. In this study, we determined the effect of malaria exposure during pregnancy on the transfer of EBV-specific maternal antibodies in a region of western Kenya that experiences endemic malaria. Pregnant mothers were recruited and followed up until delivery to determine levels of neonatal malaria exposure. Levels of EBV lytic (viral capsid antigen [VCA], Z transcriptional activator [Zta], and early diffuse antigen complex [EAd]) and EBV latent (EBV nuclear antigen-1 (EBNA1]) and tetanus-specific IgG antibodies were measured in 70 paired maternal and cord blood samples using a Luminex-bead-based assay. A high proportion (63%) of the infants were exposed to malaria in utero. Levels of EBV-and tetanus-specific antibodies were similar in malaria-infected mothers and in mothers who had no detectable malaria infection. Malaria-exposed neonates had significantly lower levels of anti-EBNA1, anti-Zta, and anti-EAd antibodies than were seen in their mothers. In utero malaria exposure resulted in significant reductions in transplacental transfer of anti-VCA-p18 and anti-EBNA1 antibodies of 13% and 22%, respectively. Neonates received significantly low levels of anti-Zta and anti-EAd antibodies irrespective of malaria exposure levels. In multivariate analysis, in utero malaria exposure was associated with a significant reduction in the transfer of anti-VCA-p18 and anti-EBNA1 antibodies to the neonates (P ؍ 0.0234 and P ؍ 0.0017, respectively). Malaria during pregnancy results in differential levels of transfer of EBV-specific antibodies from the mother to the fetus. The impaired transplacental transfer of some antibodies may lead to the malaria-exposed neonates being susceptible to early EBV infection. E ndemic Burkitt's lymphoma (eBL) is a distinct form of nonHodgkin's lymphoma and is the most common pediatric malignancy in regions of malaria endemicity of sub-Saharan Africa (1). Both infection with Epstein-Barr virus (EBV) and repeated episodes of Plasmodium falciparum malaria are known risk factors for eBL (2), but the mechanism(s) by which these two agents interact to promote the emergence of malignant B cell clones has not been elucidated. Recently, we found that infants from a region of malaria endemicity of western Kenya were infected with EBV by 6 months of age (3). Living in regions of malaria endemicity was a predictor of this early age of primary infection. This aberrant primary EBV infection may set the stage for lymphoma development, as previously hypothesized (4-6).The lytic and latent phases of the EBV life cycle induce distinct antibodies in response to specific lytic and latent antigens. Anti-EBV nuclear antigen-1 (EBNA1) antibodies are produced against EBNA1, the only antigen expressed in latently infected memory B cells and in eBL tumors (7). Anti-viral capsid antigen (anti-VCA), anti-early antigen (ant...
Exposure to the plant Euphorbia tirucalli has been proposed to be a cofactor in the genesis of endemic Burkitt's lymphoma (eBL). The purpose of this study was to examine the effects of unpurified E. tirucalli latex on Epstein -Barr virus (EBV) gene expression. A Burkitt lymphoma cell line was treated with varying dilutions of the latex and the effects on EBV gene expression were measured. We observed that the latex was capable of reactivating the EBV lytic cycle in a dose-dependent manner and at dilutions as low as 10 À6 . Simultaneous treatment of cells with E. tirucalli latex and the protein kinase C inhibitor 1-(5-isoquinolinesulphonyl)-2-methylpiperazine dihydrochloride blocked lytic cycle activation. These data suggest that environmental exposure to the latex of E. tirucalli could directly activate the EBV lytic cycle and provide further evidence of a role for E. tirucalli in the aetiology of eBL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.