<p class="Char">In this paper, the modified Adomian decomposition method (MADM) is usedto solve different types of differential equations, one of the numerical analysis methods for solving non linear partial differential equations (Drinfeld–Sokolov–Wilson system) and short (DSWS) that occur in shallow water flows. A Genetic Algorithm was used to find the optimal value for the parameter (a). We numerically solved the system (DSWS) and compared the result to the exact solution. When the value of it is low and close to zero, the MADM provides an excellent approximation to the exact solution. As well as the lower value of leads to the numerical algorithm of (MADM) approaching the real solution. Finally, found the optimal value when a=-10 by using the Genetic Algorithm (G-MADM). All the computations were carried out with the aid of Maple 18 and Matlab to find the parameter value (a) by using the genetic algorithm as well as to figures drawing. The errors in this paper resulted from cut errors and mean square errors.</p>
Wavelet analysis plays a prominent role in various fields of scientific disciplines. Mainly, wavelets are very successfully used in signal analysis for waveform representation and segmentation, time-frequency analysis, and fast algorithms in the propagation equations and reaction. This research aimed to guide researchers to use Cos and Sin (CAS) to approximate the solution of the partial differential equation system. This method has been successfully applied to solve a coupled system of nonlinear Reaction-diffusion systems. It has been shown CAS wavelet method is quite capable and suited for finding exact solutions once the consistency of the method gives wider applicability where the main idea is to transform complex nonlinear partial differential equations into algebraic equation systems, which are easy to handle and find a numerical solution for them. By comparing the numerical solutions of the CAS and Galerkin finite elements methods, the answer of nonlinear Reaction-diffusion systems using the CAS wavelets for all tˆ and x values is accurate, reliable, robust, promising, and quickly arrives at the exact solution. When parameters 𝜀1 𝑎𝑛𝑑 𝜀2 are growing and with L decreasing, then the CAS method converges to steady-state solutions quickly (the less L, the more accurate the solution). It is converging towards steady-state solutions faster than and loses steps over time. Moreover, the results also show that the solution of the CAS wavelets is more reliable and faster compared to the Galerkin finite elements (G.F.E).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.