Background PIWI-interacting RNAs (piRNAs) are an abundant single-stranded type of small non-coding RNAs (sncRNAs), which initially were discovered in gonadal cells, with a role as defenders of genomic integrity in the germline, acting against the transposable elements. With a regular size range of 21-35 nt, piRNAs are associated with a PIWI-clade of Argonaute family proteins. The most widely accepted mechanisms of biogenesis for piRNAs involve the transcription of longer precursors of RNAs to be processed, by complexes of proteins, to functional size, preferentially accommodating uridine residues at the 5’ end and 3’ methylation to increase the stability of these molecules. piRNAs have also been detected in somatic cells, with diverse potential functions, indicating their high plasticity and pleiotropic activity. Discovered about two decades ago, piRNAs are a large and versatile type of sncRNA and that remain insufficiently identified and analyzed, through next-generation sequencing (NGS), to evaluate their processing, functions, and biogenesis in different cell types and during development. piRNAs’ distinction from other sncRNAs has led to controversial results and interpretation difficulties when using existing databases because of the heterogeneity of the criteria used in making the distinction. Description We present “piRNA-IPdb”, a database based uniquely on datasets obtaining after the defining characteristic of piRNAs: those small RNAs bound to PIWI proteins. We selected and analyzed sequences from piRBase that exclusively cover the binding to PIWI. We pooled a total of 18,821,815 sequences from RNA-seq after immunoprecipitation that included the binding to any of the mouse PIWI proteins (MILI, MIWI, or MIWI2). Conclusions In summary, we present the characteristics and potential use of piRNA-IPdb database for the analysis of bona fide piRNAs.
Although mitochondria are widely studied organelles, the recent interest in the role of mitochondrial small noncoding RNAs (sncRNAs), miRNAs, and more recently, piRNAs, is providing new functional perspectives in germ cell development and differentiation. piRNAs (PIWI-interacting RNAs) are single-stranded sncRNAs of mostly about 20–35 nucleotides, generated from the processing of pre-piRNAs. We leverage next-generation sequencing data obtained from mouse primordial germ cells and somatic cells purified from early-differentiating embryonic ovaries and testis from 11.5 to 13.5 days postcoitum. Using bioinformatic tools, we elucidate (i) the origins of piRNAs as transcribed from mitochondrial DNA fragments inserted in the nucleus or from the mitochondrial genome; (ii) their levels of expression; and (iii) their potential roles, as well as their association with genomic regions encoding other sncRNAs (such as tRNAs and rRNAs) and the mitochondrial regulatory region (D-loop). Finally, our results suggest how nucleo-mitochondrial communication, both anterograde and retrograde signaling, may be mediated by mitochondria-associated piRNAs.
Vinclozolin is a pesticide with antiandrogenic activity as an endocrine disruptor compound. Its effects upon the progression of primordial follicles were assessed in cultures of mouse fetal ovaries from the onset of meiotic differentiation of germ cells (13.5 days post coitum) and from both in vivo exposed mice and in vitro exposed ovaries. Exposure of ovaries to vinclozolin—at in vitro dosages ranging from 10 to 200 μM and in 3D ex vivo culture following in vivo exposure to 50 mg/kg bw/day—showed delays in meiocyte differentiation and in follicle growth, even at the lowest in vitro dose exposure. Immunofluorescent analysis showed the presence of the proteins MSY2 and NOBOX in the primary follicles but no difference in the level of protein signals or in the number of follicles in relation to treatment. However, assessing the cytological differentiation of germ cells by detecting the synaptonemal complex protein SYCP3, the exposure to vinclozolin delayed meiotic differentiation from both in vitro- and in vivo-exposed ovaries. These effects were concomitant with changes in the energy metabolism, detected as a relative increase of glycolytic metabolism in live-cell metabolic assays in exposed ovaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.