We describe a form of nonlinear decomposition that is well-suited for efficient encoding of natural signals. Signals are initially decomposed using a bank of linear filters. Each filter response is then rectified and divided by a weighted sum of rectified responses of neighboring filters. We show that this decomposition, with parameters optimized for the statistics of a generic ensemble of natural images or sounds, provides a good characterization of the nonlinear response properties of typical neurons in primary visual cortex or auditory nerve, respectively. These results suggest that nonlinear response properties of sensory neurons are not an accident of biological implementation, but have an important functional role.
Response properties of sensory neurons are commonly described using receptive fields. This description may be formalized in a model that operates with a small set of linear filters whose outputs are nonlinearly combined to determine the instantaneous firing rate. Spike-triggered average and covariance analyses can be used to estimate the filters and nonlinear combination rule from extracellular experimental data. We describe this methodology, demonstrating it with simulated model neuron examples that emphasize practical issues that arise in experimental situations.
Neurons in primary visual cortex (V1) are commonly classified as simple or complex based upon their sensitivity to the sign of stimulus contrast. The responses of both cell types can be described by a general model in which the outputs of a set of linear filters are nonlinearly combined. We estimated the model for a population of V1 neurons by analyzing the mean and covariance of the spatiotemporal distribution of random bar stimuli that were associated with spikes. This analysis reveals an unsuspected richness of neuronal computation within V1. Specifically, simple and complex cell responses are best described using more linear filters than the one or two found in standard models. Many filters revealed by the model contribute suppressive signals that appear to have a predominantly divisive influence on neuronal firing. Suppressive signals are especially potent in direction-selective cells, where they reduce responses to stimuli moving in the nonpreferred direction.
No sensory stimulus is an island unto itself; rather, it can only properly be interpreted in light of the stimuli that surround it in space and time. This can result in entertaining illusions and puzzling results in psychological and neurophysiological experiments. We concentrate on perhaps the best studied test case, namely orientation or tilt, which gives rise to the notorious tilt illusion and the adaptation tilt after-effect. We review the empirical literature and discuss the computational and statistical ideas that are battling to explain these conundrums, and thereby gain favour as more general accounts of cortical processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.