We identify three programming language abstractions for the construction of reusable components: abstract type members, explicit selftypes, and modular mixin composition. Together, these abstractions enable us to transform an arbitrary assembly of static program parts with hard references between them into a system of reusable components. The transformation maintains the structure of the original system. We demonstrate this approach in two case studies, a subject/observer framework and a compiler front-end.
We present a type system for a language based on F ≤ , which allows certain type annotations to be elided in actual programs. Local type inference determines types by a combination of type propagation and local constraint solving, rather than by global constraint solving. We refine the previously existing local type inference system of Pierce and Turner[PT98] by allowing partial type information to be propagated. This is expressed by coloring types to indicate propagation directions. Propagating partial type information allows us to omit type annotations for the visitor pattern, the analogue of pattern matching in languages without sum types.
We describe the implementation of first-class polymorphic delimited continuations in the programming language Scala. We use Scala's pluggable typing architecture to implement a simple type and effect system, which discriminates expressions with control effects from those without and accurately tracks answer type modification incurred by control effects. To tackle the problem of implementing first-class continuations under the adverse conditions brought upon by the Java VM, we employ a selective CPS transform, which is driven entirely by effect-annotated types and leaves pure code in direct style. Benchmarks indicate that this high-level approach performs competitively.
With Java 5 and C# 2.0, first-order parametric polymorphism was introduced in mainstream object-oriented programming languages under the name of generics. Although the first-order variant of generics is very useful, it also imposes some restrictions: it is possible to abstract over a type, but the resulting type constructor cannot be abstracted over. This can lead to code duplication. We removed this restriction in Scala, by allowing type constructors as type parameters and abstract type members. This paper presents the design and implementation of the resulting type constructor polymorphism. Furthermore, we study how this feature interacts with existing object-oriented constructs, and show how it makes the language more expressive.
We present GJ, a design that extends the Java programming language with generic types and methods. These are both explained and implemented by translation into the unextended language. The translation closely mimics the way generics are emulated by programmers: it erases all type parameters, maps type variables to their bounds, and inserts casts where needed. Some subtleties of the translation are caused by the handling of overriding.GJ increases expressiveness and safety: code utilizing generic libraries is no longer buried under a plethora of casts, and the corresponding casts inserted by the translation are guaranteed to not fail.GJ is designed to be fully backwards compatible with the current Java language, which simplifies the transition from non-generic to generic programming. In particular, one can retrofit existing library classes with generic interfaces without changing their code.An implementation of GJ has been written in GJ, and is freely available on the web.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.