The development of distinct cellular layers and precise synaptic circuits is essential for the formation of well functioning cortical structures in the mammalian brain. The extracellular protein Reelin, through the activation of a core signaling pathway, including the receptors ApoER2 and VLDLR (very low density lipoprotein receptor) and the adapter protein Dab1 (Disabled-1), controls the positioning of radially migrating principal neurons, promotes the extension of dendritic processes in immature forebrain neurons, and affects synaptic transmission. Here we report for the first time that the Reelin signaling pathway promotes the development of postsynaptic structures such as dendritic spines in hippocampal pyramidal neurons. Our data underscore the importance of Reelin as a factor that promotes the maturation of target neuronal populations and the development of excitatory circuits in the postnatal hippocampus. These findings may have implications for understanding the origin of cognitive disorders associated with Reelin deficiency.
Dyrk1A is a member of the mammalian Dyrk [dual-specificity tyrosine-(Y)-phosphorylation regulated kinase] family of protein kinasesthat is expressed at high levels in the brain, but its role in the development and function of this organ is not well understood. The human DYRK1A gene is located on trisomic chromosome 21 in Down syndrome (DS) patients, leading to its overexpression. Dyrk1A is also overexpressed in animal models of DS and in gene-specific transgenic mice that consistently exhibit cognitive impairment. To elucidate the cellular and molecular mechanisms that are affected by increased levels of Dyrk1A in the developing brain, we overexpressed this kinase in the embryonic mouse neocortex using the in utero electroporation technique. We found that Dyrk1A overexpression inhibits neural cell proliferation and promotes premature neuronal differentiation in the developing cerebral cortex without affecting cell fate and layer positioning. These effects are dependent on the Dyrk1A kinase activity and are mediated by the nuclear export and degradation of cyclin D1. This study identifies specific Dyrk1A-induced mechanisms that disrupt the normal process of corticogenesis and possibly contribute to cognitive impairment observed in DS patients and animal models.
Neural progenitor cells in the developing dorsal forebrain give rise to excitatory neurons, astrocytes, and oligodendrocytes for the neocortex. While we are starting to gain a better understanding about the mechanisms that direct the formation of neocortical neurons and astrocytes, far less is known about the molecular mechanisms that instruct dorsal forebrain progenitors to make oligodendrocytes. In this study, we show that Sonic hedgehog (Shh) signaling is required in dorsal progenitors for their late embryonic transition to oligodendrogenesis. Using genetic lineage-tracing in mice of both sexes, we demonstrate that most oligodendrocytes in the embryonic neocortex derive from Emx1 dorsal forebrain progenitors. Deletion of the Shh signaling effector specifically in Emx1 progenitors led to significantly decreased oligodendrocyte numbers in the embryonic neocortex. Conversely, knock-out of the Shh antagonist was sufficient to increase neocortical oligodendrogenesis. Using conditional knock-out strategies, we found that Shh ligand is supplied to dorsal progenitors through multiple sources. Loss of from Dlx5/6 interneurons caused a significant reduction in oligodendrocytes in the embryonic neocortex. This phenotype was identical to that observed upon deletion from the entire CNS using, indicating that interneurons migrating into the neocortex from the subpallium are the primary neural source of Shh for dorsal oligodendrogenesis. Additionally, deletion of from migrating interneurons together with the choroid plexus epithelium led to a more severe loss of oligodendrocytes, suggesting that the choroid plexus is an important non-neural source of Shh ligand. Together, our studies demonstrate that the dorsal wave of neocortical oligodendrogenesis occurs earlier than previously appreciated and requires highly regulated Shh signaling from multiple embryonic sources. Most neocortical oligodendrocytes are made by neural progenitors in the dorsal forebrain, but the mechanisms that specify this fate are poorly understood. This study identifies Sonic hedgehog (Shh) signaling as a critical pathway in the transition from neurogenesis to oligodendrogenesis in dorsal forebrain progenitors during late embryonic development. The timing of this neuron-to-glia "switch" coincides with the arrival of migrating interneurons into the dorsal germinal zone, which we identify as a critical source of Shh ligand, which drives oligodendrogenesis. Our data provide evidence for a new model in which Shh signaling increases in the dorsal forebrain late in embryonic development to provide a temporally regulated mechanism that initiates the third wave of neocortical oligodendrogenesis.
Neurons that reenter a cell cycle after maturation are at increased risk for death, yet the mechanisms by which a normal neuron suppresses the cycle remain mostly unknown. Our laboratory has shown that cyclin-dependent kinase 5 (Cdk5) is a potent cell cycle suppressor, and we report here on the molecular basis of this activity. Cell cycle suppression by Cdk5 requires its binding to the p35 activator protein. The related p39 and p25 proteins cannot serve as substitutes. Unexpectedly, Cdk5 enzymatic activity is not required to perform this function. Rather, the link to cell cycle regulation is made through the formation of a previously unknown complex consisting of the p35-Cdk5 dimer and E2F1. Formation of this complex excludes the E2F1 cofactor, DP1, thus inhibiting E2F1 binding to the promoters of various cell cycle genes. This anti-cell cycle activity is most likely a neuroprotective function of Cdk5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.