Methemoglobinemia is an acquired or inherited condition resulting from oxidative stress or dysfunction of the NADH-cytochrome b5 reductase or associated pathways. This study describes the clinical, pathophysiological, and molecular genetic features of a cat with hereditary methemoglobinemia. Whole genome sequencing and mRNA transcript analyses were performed in affected and control cats. Co-oximetry, ektacytometry, Ellman’s assay for reduced glutathione concentrations, and CYB5R activity were assessed. A young adult European domestic shorthair cat decompensated at induction of anesthesia and was found to have persistent methemoglobinemia of 39 ± 8% (reference range < 3%) of total hemoglobin which could be reversed upon intravenous methylene blue injection. The erythrocytic CYB5R activity was 20 ± 6% of normal. Genetic analyses revealed a single homozygous base exchange at the beginning of intron 3 of the CYB5R3 gene, c.226+5G>A. Subsequent mRNA studies confirmed a splice defect and demonstrated expression of two mutant CYB5R3 transcripts. Erythrocytic glutathione levels were twice that of controls. Mild microcytosis, echinocytes, and multiple Ca2+-filled vesicles were found in the affected cat. Erythrocytes were unstable at high osmolarities although highly deformable as follows from the changes in elongation index and maximal-tolerated osmolarity. Clinicopathological presentation of this cat was similar to other cats with CYB5R3 deficiency. We found that methemoglobinemia is associated with an increase in red blood cell fragility and deformability, glutathione overload, and morphological alterations typical for stress erythropoiesis.
Disproportionate dwarfism phenotypes represent a heterogeneous subset of skeletal dysplasias and have been described in many species including humans and dogs. In this study, we investigated Vizsla dogs that were affected by disproportionate dwarfism that we propose to designate as skeletal dysplasia 3 (SD3). The most striking skeletal changes comprised a marked shortening and deformation of the humerus and femur. An extended pedigree with six affected dogs suggested autosomal recessive inheritance. Combined linkage and homozygosity mapping localized a potential genetic defect to a ~4 Mb interval on chromosome 33. We sequenced the genome of an affected dog, and comparison with 926 control genomes revealed a single, private protein-changing variant in the critical interval, PCYT1A:XM_038583131.1:c.673T>C, predicted to cause an exchange of a highly conserved amino acid, XP_038439059.1:p.(Y225H). We observed perfect co-segregation of the genotypes with the phenotype in the studied family. When genotyping additional Vizslas, we encountered a single dog with disproportionate dwarfism that did not carry the mutant PCYT1A allele, which we hypothesize was due to heterogeneity. In the remaining 130 dogs, we observed perfect genotype–phenotype association, and none of the unaffected dogs were homozygous for the mutant PCYT1A allele. PCYT1A loss-of-function variants cause spondylometaphyseal dysplasia with cone–rod dystrophy (SMD-CRD) in humans. The skeletal changes in Vizslas were comparable to human patients. So far, no ocular phenotype has been recognized in dwarf Vizslas. We propose the PCYT1A missense variant as a candidate causative variant for SD3. Our data facilitate genetic testing of Vizslas to prevent the unintentional breeding of further affected puppies.
Primary ciliary dyskinesia (PCD) represents a group of diseases characterized by impaired movement of cilia and subsequent health problems in diverse organ systems, notably the respiratory tract. Almost 50 candidate genes for PCD are known in humans. In this study, we investigated an Australian Shepherd dog with a history of recurrent respiratory infections and nasal discharge. A transmission electron microscopy investigation led to the diagnosis of PCD with central pair defect, in which the normal 9:2 arrangement of respiratory cilia was altered and reduced to a 9:0 arrangement. Whole genome sequencing data from the affected dog was obtained and searched for variants in PCD candidate genes that were not present in 918 control genomes from different breeds. This revealed a homozygous single base pair exchange at a splice site of STK36, XM_038585732.1:c.2868‐1G>A. The mutant allele was absent from 281 additionally genotyped Australian Shepherd dogs. RT‐PCR confirmed aberrant splicing in the affected dog with the skipping of exon 20 and the insertion of a cryptic exon, which is predicted to lead to a premature stop codon and truncation of 36% of the STK36 wild‐type open reading frame, XP_038441660.1:(p.Met957Profs*11). STK36 variants were previously reported to cause PCD in humans and mice. The knowledge from other species together with the absence of the mutant allele in more than 1000 control dogs suggests STK36:c.2868‐1G>A as the most likely candidate variant for PCD in the investigated case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.