An increase in the generation of biogenic wastes such as locust bean pods and eggshells coupled with the need to drive sustainability in the cement industry has led the use of these wastes as cement replacement materials. The paper aims to investigate the effect of locust bean pod ash (LBPA) and eggshell ash (ESA) on the mortar compressive and flexural strength of ternary cement blends. The LBPA was obtained by calcining locust bean pod (LBP) at various temperatures of 800-900 °C and time of 60-120 minutes at an interval of 50 °C and 30 minutes respectively to determine the optimal conditions. The chemical composition of Ordinary Portland cement (OPC), LBPA and ESA were obtained via X-ray Fluorescence (XRF) Spectrometer and LBPA chemical composition did not satisfy one of the requirements specified by ASTM C618-01 (2001) with SiO 2 + Al 2 O 3 +Fe 2 O 3 of 30.42 wt. % which is less than 50 wt. %, but satisfies SO 3 content requirement of 0.7 wt. % and Loss on Ignition (LOI) of 7.12 wt. % and contains 19.42 wt. % CaO which is within the range of 10-30 wt. % CaO is class C pozzolan. The compressive strength of blended cement mortars at the early age of 2 and 7 days produced better strengths for cement blends with higher ESA content than LBPA especially at LBPA/LBPA-ESA ratio of 0, 0.4 and 0.6 for 2.5 wt. % cement replacement respectively. The early strength gain could be attributed to the provision of more nucleation sites by ESA inclusion which results in the acceleration of cement hydration rate. On the other hand, the enhanced strengths at 28 days of cement blended with various replacement from 2.5-10 wt. % could be attributed to the pozzolanic reaction between the available lime and reactive silica from LBPA despite clinker diminution which was close to control. Another reason for enhanced strength' could be attributed to the increased potassium content by an increase in LBPA content resulting in a gradual strength gain (retarder) muscovite formation K 2 Al 2 Si 6 Al 4 O 20 (OH) 4. All cement blends experienced an increase in the mortar compressive and flexural strengths as the curing day progressed with some blends producing enhanced strength compared to control especially with 1.5 ESA1LBPA produced the best strength at 50.15 (6.82) N/mm 2 against 48.80 (6.80) N/mm 2. This enhanced strength could be related to the pozzolanic activity and the high potassium content from LBPA despite clinker diminution, especially at 28 days.
This research is aimed at production and investigation of the potentials of blending mango gum with cashew gum on its binding properties as a substitute for gum Arabic. The high demand for adhesives has led to the search for other alternatives to Arabic and cashew gum due to their high cost and nonavailability. Thus, the need to investigate the potentials of mango gum as well as the possibility of replacing mango gum with cashew gum to be employed as an adhesive. The raw gum was extracted from the mango tree, dried, sorted, underwent size reduction of the gum exudates, sieved into different mesh sizes, dissolved in distilled water and centrifuged to remove impurities and other polysaccharides. The binding properties of the extracted mango gum was monitored in terms of physicochemical properties such as viscosity, pH and specific gravity of the gum using capillary viscometer, pH meter and density bottle respectively. The variation of the agitation speed between 250, 500 and 750 rpm, particle size of the raw MG between 75 µm, 212 µm and 300 µm and the replacement of MG with CG from 0-50% at interval of 10% respectively. The effect of agitation speed, particle size of the raw MG and the replacement of MG with CG were investigated in terms of the viscosity, pH and specific gravity of the gum and found that the best quality gum was obtained at particle size of 75 µm, pH of 4.7, agitation speed of 500 rpm and specific gravity of 1.06 respectively. Results indicated that the use of additives such as glycerine, starch and zinc oxide enhanced the binding properties of the gum and MG as well as gums blended with CG were found to fall within the limits to be considered to possess good binding properties. An increase in MG replacement with CG up to 50 %, resulted in a decrease in viscosity and specific gravity of the blended gum by 21.32 % and 3.77 % respectively while pH experienced an increase from 4.4-5.7 i.e. more alkaline in nature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.