Synaptic vesicle proteins 2 (SV2) were discovered in the early 80s, but the clear demonstration that SV2A is the target of efficacious anti-epileptic drugs from the racetam family stimulated efforts to improve understanding of its role in the brain. Many functions have been suggested for SV2 proteins including ions or neurotransmitters transport or priming of SVs. Moreover, several recent studies highlighted the link between SV2 and different neuronal disorders such as epilepsy, Schizophrenia (SCZ), Alzheimer’s or Parkinson’s disease. In this review article, we will summarize our present knowledge on SV2A function(s) and its potential role(s) in the pathophysiology of various brain disorders.
SV2A is a glycoprotein present in the membranes of most synaptic vesicles. Although it has been highly conserved throughout evolution, its physiological role remains largely unknown. Nevertheless, Levetiracetam, a very effective anti-epileptic drug, has been recently demonstrated to bind to SV2A. At present, our understanding of the normal function of SV2A and its possible involvement in diseases like epilepsy is limited. With this study, we sought to develop a relevant model enabling analysis of SV2A’s role in the occurrence or progression of epilepsy. For this purpose, we generated a floxed SV2A mouse model with conditional alleles carrying LoxP sites around exon 3 by means of a gene-targeting strategy. The SV2A lox/lox mouse line is indistinguishable from wild-type mice. When the recombination was observed in all cells, a model of mice with both SV2A alleles floxed around exon 3 recapitulated the phenotype of SV2A KO mice, including seizures. However, the specific invalidation of SV2A in the CA3 hippocampal region was not followed by epileptic seizures or decrease in the epileptic threshold on pentylenetetrazol (PTZ) test. These results demonstrate that the floxed SV2A mouse line has been successfully established. This transgenic mouse model will be useful for investigating SV2A functions related to cell types and developmental stages.
Parvalbumin-positive neurons are inhibitory neurons that release GABA and are mostly represented by fast-spiking basket or chandelier cells. They constitute a minor neuronal population, yet their peculiar profiles allow them to react quickly to any event in the brain under normal or pathological conditions. In this review, we will summarize the current knowledge about the fundamentals of fast-spiking parvalbumin-positive neurons, focusing on their morphology and specific channel/protein content. Next, we will explore their development, maturation, and migration in the brain. Finally, we will unravel their potential contribution to the physiopathology of epilepsy.
The Synaptic Vesicle Protein 2A (SV2A) is a transmembrane protein whose presence is reduced both in animal models and in patients with chronic epilepsy. Besides its implication in the epileptic process, the behavioural consequences of the changes in its expression remain unclear. The purpose of our research is to better understand the possible role(s) of this protein through the phenotype of cKO ( Grik4 Cre+/- , SV2A lox/lox ) mice, male and female, which present a specific decrease of SV2A expression levels in the hippocampal glutamatergic neurons but without any epileptic seizures. In this study, we compare the cKO mice with cHZ ( Grik4 Cre+/- , SV2A lox/+ ) and WT ( Grik4 Cre+/+ , SV2A lox/lox ) mice through a battery of tests, used to evaluate different features: the anxiety-related features (Elevated Plus Maze), the locomotor activity (Activity Chambers), the contextual fear-related memory (Contextual Fear Conditioning), and the spatial memory (Barnes Maze). Our results showed statistically significant differences in the habituation to a new environment, an increase in the anxiety levels and spatial memory deficit in the cHZ and cKO groups, compared to the WT group. No statistically significant differences due to the genotype appeared in the spontaneous locomotor activity or the fear-linked memory. However, sexual differences were observed in this last feature. These results highlight not only an important role of the SV2A protein in the cognitive and anxiety problems typically encountered in epileptic patients, but also a possible role in the symptomatology of other neurodegenerative diseases, such as the Alzheimer’s disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.