SummaryThe adenylate cyclase toxin of the prokaryote Bordetella pertussis is stimulated by the eukaryotic regulatory protein, calmodulin. A general strategy, using the adenylate-cyclase-calmodulin interaction as a tool, has permitted cloning and expression of the toxin in Escherichia coli in the absence of any B. pertussis trans-activating factor. We show that the protein is synthesized in a large precursor form composed of 1706 amino acids. The calmodulin-stimulated catalytic activity resides in the amino-terminal 450 amino acids of the adenylate cyclase. The enzyme expressed in E. coli is recognized in Western blots by antibodies directed against purified B. pertussis adenylate cyclase, and its activity is inhibited by these antibodies.
The pyruvate-stimulated adenylate cyclase from Brevibacterium liquefaciens produces up to 450 microM cyclic AMP in the culture medium when the bacterium is grown on glucose and alanine. In this paper we report the cloning, expression and sequencing of the gene for this enzyme. Residues were identified, within the C-terminal domain, which are conserved in adenylate and guanylate cyclase sequences from eukaryotes and in the adenylate cyclase of the prokaryote Rhizobium meliloti. We have also identified a sequence of 30 residues near the N-terminus of the protein which is homologous to part of the regulatory domain of the cellular homologues of the oncogenes fes and fps; this sequence is also present in the avian Fujinami sarcoma virus fps gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.