[1] A global Earth Magnetic Anomaly Grid (EMAG2) has been compiled from satellite, ship, and airborne magnetic measurements. EMAG2 is a significant update of our previous candidate grid for the World Digital Magnetic Anomaly Map. The resolution has been improved from 3 arc min to 2 arc min, and the altitude has been reduced from 5 km to 4 km above the geoid. Additional grid and track line data have been included, both over land and the oceans. Wherever available, the original shipborne and airborne data were used instead of precompiled oceanic magnetic grids. Interpolation between sparse track lines in the oceans was improved by directional gridding and extrapolation, based on an oceanic crustal age model. The longest wavelengths (>330 km) were replaced with the latest CHAMP satellite magnetic field model MF6. EMAG2 is available at http://geomag.org/models/EMAG2 and for permanent archive at http://earthref.org/ cgi-bin/er.cgi?s=erda.cgi?n=970.
The Geological Survey of Norway (NGU) has produced new aeromagnetic and gravity maps from Norway and adjacent areas, compiled from ground, airborne and satellite data. Petrophysical measurements on core samples, hand specimens and on in situ bedrock exposures are essential for the interpretation of these maps. Onshore, the most prominent gravity and magnetic anomalies are attributed to lower crustal rocks that have been brought closer to the surface. The asymmetry of the gravity anomalies along the Lapland Granulite Belt and Kongsberg–Bamble Complex, combined with the steep gradient, points to the overthrusted high-density granulites as being the main source of the observed anomalies. The Kongsberg–Bamble anomaly can be traced southwards through the Kattegat to southern Sweden. This concept of gravity field modelling can also be applied to the Mid-Norwegian continental shelf and could partially explain the observed high-density rocks occurring below the Møre and Vøring basins and in the Lofoten area. Extrapolations of Late-Caledonian detachment structures occurring on the mainland can be traced on aeromagnetic and gravimetric images towards the NW across the continental margin. Subcropping Late Palaeozoic to Cenozoic sedimentary units along the mid-Norwegian coast produce a conspicuous magnetic anomaly pattern. The asymmetry of the low-amplitude anomalies, with a steep gradient and a negative anomaly to the east and a gentler gradient to the west, relates the anomalies to gently westward dipping strata. Recent aeromagnetic surveys in the Barents Sea have revealed negative magnetic anomalies associated with shallow salt diapirs. Buried Quaternary channels partly filled with gravel and boulders of crystalline rocks generate magnetic anomalies in the North Sea. The new maps also show that the opening of the Norwegian–Greenland Sea occurred along stable continental margins without offsets across minor fracture zones, or involving jumps in the spreading axis. A triple junction formed at 48 Ma between the Lofoten and Norway Basins.
A new generation of aeromagnetic data documents the post-Caledonide rift evolution of the southwestern Barents Sea (SWBS) from the Norwegian mainland up to the continent-ocean transition. We propose a geological and tectonic scenario of the SWBS in which the Caledonian nappes and thrust sheets, well-constrained onshore, swing from a NE-SW trend onshore Norway to NW-SE/NNW-SSE across the SWBS platform area. On the Finnmark and Bjarmeland platforms, the dominant inherited magnetic basement pattern may also reflect the regional and post-Caledonian development of the late Paleozoic basins. Farther west, the pre-breakup rift system is characterized by the Loppa and Stappen Highs, which are interpreted as a series of rigid continental blocks (ribbons) poorly thinned as compared to the adjacent grabens and sag basins. As part of the complex western rift system, the Bjørnøya Basin is interpreted as a propagating system of highly thinned crust, which aborted in late Mesozoic time. This thick Cretaceous sag basin is underlain by a deep-seated high-density body, interpreted as exhumed high-grade metamorphic lower crust. The abortion of this propagating basin coincides with a migration and complete reorganization of the crustal extension toward a second necking zone defined at the level of the western volcanic sheared margin and proto-breakup axis. The abortion of the Bjørnøya Basin may be partly explained by its trend oblique to the regional, inherited, structural grain, revealed by the new aeromagnetic compilation, and by the onset of further weakening later sustained by the onset of magmatism to the west.
A lineament pattern on the NE Atlantic margin is discussed, illustrated by gravity and magnetic images in the Norwegian Sea, and reviewed in the context of onshore field evidence. While most possible fault trends exist, three major sets predominate. A NE-SW left-stepping lineament set defines the gross geometry of the margin, while interposing northerly trends impose a rhomboidal geometry at a variety of scales. The margin is segmented by NW-SE transfer zones, sometimes involving significant offsets. The principal trends are primarily a function of Mesozoic-Cenozoic plate-wide extensional stress fields. Certain Proterozoic and Caledonian lineaments were, however, opportunistically reactivated according to the extension direction. Caledonian NE-SW orogen-oblique shears, typified by the Møre-Trøndelag Fault Zone, were reactivated via (?Jurassic) strike-slip or oblique-slip, and were further exploited during Cretaceous-early Cenozoic extensional episodes leading to continental break-up. Jurassic E-W extension may also have reactivated N-S faults existing in the basement or generated in duplex systems between the NE-SW shears. Precambrian and Caledonian basement lineaments striking at a low angle to the extension direction probably predisposed the formation of major transfer zones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.