The variable quality of histochemical and immunohistochemical staining of tissues may be attributed to pre-analytical and analytical variables. Both categories of variables frequently are undefined or inadequately controlled during specimen collection and preparation. Pre-analytical variables may alter the molecular composition of tissues, which results in variable staining; such variations may cause problems when different tissues are used as staining controls. We developed a standard tissue for use as a staining control. Our standard tissue contains five components: 1) nine combined human cell lines mixed with stroma from human spleen; 2) a squamous cancer cell line, A431; 3) fungus; 4) transverse sections of the mosquitofish and 5) normal human spleen. The first three components were embedded in HistoGel™ and all components were processed to paraffin and used to construct a single standard paraffin block. The muscles of mosquitofish and arteries of the spleen are positive controls for eosin staining, while other tissues are useful for assessing hematoxylin staining. The mosquitofish tissues also are excellent controls for the Masson trichrome stain and all mucin-related histochemical stains that we tested. The goblet cells of the intestine and skin stained strongly with Alcian blue, pH 2.5 (AB-2.5), mucicarmine, colloidal iron, periodic acid Schiff (PAS) or PAS-hematoxylin (PASH) and combination stains such as colloidal iron-PASH. Cell lines were not useful for evaluating histochemical stains except for PASH. The splenic stroma was a useful control for AB-2.5; however, eosin and mucin stains stained cell lines poorly, probably due to their rapid growth and associated loss of some differentiated characteristics such as production of mucins. Nevertheless, the cell lines were a critical control for immunohistochemical stains. Immunostaining of specific cell lines was consistent with the presence of markers, e.g., EGFr in DU145 cells. The cell lines expressed a wide range of markers, so they were useful controls for immunohistochemcial staining including EGFr, HER2, E-cadherin, cytokeratins, Ki67, PCNA, estrogen receptor, progesterone receptor, CD3, CD20 and CD45, activated (cleaved) caspase 3 and Bcl-2. The cell lines also were a control for the TUNEL stain.
It has been reported that when ovarian carcinoma cell lines are exposed to various concentrations of celecoxib, a COX-2 inhibitor, cell growth is decreased in a dose dependant manner. To examine further the effect of celecoxib, different cell densities of two carcinoma cell lines were exposed to various concentrations of celecoxib. LNCAP prostate and CAOV3 ovarian carcinoma cells were obtained from the American Type Culture Collection and maintained in Rosewell Park Memorial Institute 1640 and Dulbeceo's modified Eagle's medium, respectively. Each cell line was supplemented with 10% fetal bovine serum, 2 mM L-glutamine, and antibiotic-antimycotic solution, and placed in a humidified atmosphere containing 5% CO2 at 37 degrees C. After each cell line reached a confluency of 70-80%, 1,000, 2,000, 3,000, 5,000, 7,000 and 10,000 cells/well were seeded in 96 well plates in 100 microl medium/per well for 24 h. Each cell line was exposed to the same concentrations of celecoxib (10-100 microM) at each cell density for 72 h. Cell growth was assessed using a tetrazolium conversion assay. A significant decrease compared to controls was observed in cell growth at each cell density of LNCAP and CAOV3 cells plated with >or=30 microM and >or=50 microM celecoxib, respectively. When the cell growth curves were compared for each cell density at the same concentration of celecoxib, a significant decrease in cell growth was observed when LNCAP cells were plated at 10,000 cells/well and exposed to 10-100 microM celecoxib. At a cell density >or= 5,000 LNCAP cells/well, the inhibitory effect of celecoxib was less. Similarly, a significant decrease in cell growth was observed in CAOV3 cells plated at 1,000 cells/well compared to other cell numbers plated at the same drug concentrations. At a cell density of > 5,000 CAOV3 cells/well, the inhibitory effect of celecoxib was significantly less compared to other cell densities at the same concentration. We observed a more sensitive decrease in cell growth in both carcinoma lines studied at a cell density of 1,000 cells/well with exposure to 10-100 microM celecoxib. Both carcinoma cell lines were less sensitive at a cell density of 5,000 cells/well. Our results suggest that the inhibitory effect of celecoxib may be affected by cell density. Therefore, careful attention must be paid to determining the appropriate cell density for cytotoxicity studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.