BackgroundPlants selectively attract particular soil microorganisms, in particular consumers of root-excreted compounds. It is unclear to what extent cultivar type and/or growth stage affect this process.Methodology/Principal FindingsDNA-based pyrosequencing was used to characterize the structure of bacterial communities in a field cropped with potato. The rhizospheres of six cultivars denoted Aveka, Aventra, Karnico, Modena, Premiere and Desiree, at three growth stages (young, flowering and senescence) were examined, in addition to corresponding bulk soils. Around 350,000 sequences were obtained (5,700 to 38,000 per sample). Across all samples, rank abundance distributions best fitted the power law model, which indicates a community composed of a few highly dominant species next to numerous rare species. Grouping of the sequences showed that members of the Actinobacteria, Alphaproteobacteria, next to as-yet-unclassified bacteria, dominated. Other groups that were consistently found, albeit at lower abundance, were Beta-, Gamma- and Deltaproteobacteria and Acidobacteria. Principal components analyses revealed that rhizosphere samples were significantly different from corresponding bulk soil in each growth stage. Furthermore, cultivar effects were found in the young plant stage, whereas these became insignificant in the flowering and senescence stages. Besides, an effect of time of season was observed for both rhizosphere and bulk soils. The analyzed rhizosphere samples of the potato cultivars were grouped into two groups, in accordance with the allocation of carbon to starch in their tubers, i.e. Aveka, Aventra and Karnico (high) versus Premiere and Desiree (low) and thus replicates per group were established.ConclusionsAcross all potato cultivars, the young plant stages revealed cultivar-dependent bacterial community structures, which disappeared in the flowering and senescence stages. Furthermore, Pseudomonas, Beta-, Alpha- and Deltaproteobacteria flourished under different ecological conditions than the Acidobacteria.
Four extraction methods, including a novel one, were compared for their efficiencies in producing DNA from three contrasting agricultural soils. Molecular analyses (PCR-denaturing gradient gel electrophoresis [DGGE] and clone libraries) focusing on different microbial groups were used as assessment criteria. Per soil, the DNA yields differed between extraction methods. Clear effects of method on apparent richness and community structure were found. Actinobacterial diversity based on soil DNA produced by two divergent methods revealed that a hitherto-undescribed group was obtained by the novel method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.