The synaptonemal complex (SC) is a polymer that spans ~100 nm between paired homologous chromosomes during meiosis. Its striated, periodic appearance in electron micrographs led to the idea that transverse filaments within this structure ‘crosslink’ the axes of homologous chromosomes, stabilizing their pairing. SC proteins can also form polycomplexes, three-dimensional lattices that recapitulate the periodic structure of SCs but do not associate with chromosomes. Here we provide evidence that SCs and polycomplexes contain mobile subunits and that their assembly is promoted by weak hydrophobic interactions, indicative of a liquid crystalline phase. We further show that in the absence of recombination intermediates, polycomplexes recapitulate the dynamic localization of pro-crossover factors during meiotic progression, revealing how the SC might act as a conduit to regulate chromosome-wide crossover distribution. Properties unique to liquid crystals likely enable long-range signal transduction along meiotic chromosomes and underlie the rapid evolution of SC proteins.DOI: http://dx.doi.org/10.7554/eLife.21455.001
Telomere replication is achieved through the combined action of the conventional DNA replication machinery and the reverse transcriptase, telomerase. Telomere-binding proteins have crucial roles in controlling telomerase activity; however, little is known about their role in controlling semi-conservative replication, which synthesizes the bulk of telomeric DNA. Telomere repeats in the fission yeast Schizosaccharomyces pombe are bound by Taz1, a regulator of diverse telomere functions. It is generally assumed that telomere-binding proteins impede replication fork progression. Here we show that, on the contrary, Taz1 is crucial for efficient replication fork progression through the telomere. Using two-dimensional gel electrophoresis, we find that loss of Taz1 leads to stalled replication forks at telomeres and internally placed telomere sequences, regardless of whether the telomeric G-rich strand is replicated by leading- or lagging-strand synthesis. In contrast, the Taz1-interacting protein Rap1 is dispensable for efficient telomeric fork progression. Upon loss of telomerase, taz1Delta telomeres are lost precipitously, suggesting that maintenance of taz1Delta telomere repeats cannot be sustained through semi-conservative replication. As the human telomere proteins TRF1 and TRF2 are Taz1 orthologues, we predict that one or both of the human TRFs may orchestrate fork passage through human telomeres. Stalled forks at dysfunctional human telomeres are likely to accelerate the genomic instability that drives tumorigenesis.
Summary Proteins of the HORMA domain family play central but poorly understood roles in chromosome organization and dynamics during meiosis. In C. elegans, four such proteins (HIM-3, HTP-1, HTP-2, and HTP-3) have distinct but overlapping functions. Through combined biochemical, structural, and in vivo analysis, we find that these proteins form hierarchical complexes through binding of their HORMA domains to cognate peptides within their partners’ C-terminal tails, analogous to the “safety belt” binding mechanism of Mad2. These interactions are critical for recruitment of HIM-3, HTP-1, and HTP-2 to chromosome axes. HTP-3, in addition to recruiting the other HORMA domain proteins to the axis, plays an independent role in sister chromatid cohesion and double-strand break formation. Finally, we find that mammalian HORMAD1 binds a peptide motif found both at its own C-terminus and that of HORMAD2, indicating that this mode of intermolecular association is a conserved feature of meiotic chromosome structure in eukaryotes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.