Background and aims: Immunotherapy with anti-CD20-specific antibodies (e.g. rituximab), has become the standard of care for B cell lymphoproliferative disorders and many autoimmune diseases. Despite previously demonstrated role for B cells in bone metabolism, the effect of anti-CD20-mediated B cell depletion on bone mass in human patients has not been thoroughly studied. For example, in rheumatological patients the effect of rituximab on bone mass yielded conflicting results, while in lymphoma patients it has not yet been described. Here, we describe the effect of treatment with anti-CD20-specific antibodies on bone mass in a cohort of patients with follicular lymphoma and propose a plausible mechanism using murine model. Methods: To assess the effect of rituximab on bone mass in lymphoma patients, we retrospectively studied the bone mass in patients with follicular lymphoma (FL) during the maintenance phase of chemoimunotherapy, i.e. when rituximab is administered as monotherapy. FL patients on no maintenance (historical controls) or patients with marginal zone lymphoma were include as a control group. Cross-sectional X-ray imaging (CT/PET-CT), performed at the completion of the induction phase and 6-12 months thereafter, were used to serially assess bone density. Wild-type female C57BL/6J mice and mouse anti-mouse CD20 antibody (Genentech) were used for the animal experimental system. Murine bone structure was assessed by the microCT method. Immunophenotyping of the bone marrow (BM), spleen and peripheral blood cells was performed. ELISA and "real-time" quantitative PCR were used to measure the levels of key mediators of bone remodeling, e.g. RANKL, OPG and TNFα. Standard osteoclastogenic assay was used to assesses the osteoclastogenic potential of BM cells. Results: Rituximab treatment prevented the decline in bone mass observed in patients who did not receive active maintenance therapy, both in the lumbar spine (-2.6% vs -8%) and femoral head (-0.5% vs -5.1%) (n=12 patients in each group, p<0.05 for the comparisons in the control group, calculated by Wilcoxon matched-pairs signed rank test). Anti-CD20-mediated B cell depletion in mice led to a significant increase in bone mass as reflected by: 7.7% increase in bone mineral density (whole femur) and ~5% increase in cortical as well as trabecular tissue mineral density (n=17-21 mice in each group, p<0.05). Mechanistically, treating mice with anti-CD20 antibodies significantly decreased the osteoclastogenic signals, including RANKL and TNFα, along with a substantial downregulation of RANK (the RANKL receptor). This correlated with nearly a 50% reduction in osteoclastogenic potential of BM cells derived from B-cell-depleted animals (p<0.05). The decline in the RANKL output was observed both at the bone level (≈25% relative reduction in the mRNA levels), as measured in the whole bone and BM cells, as well as in the serum (18% relative reduction) of the anti-CD20-treated mice as compared to diluent-treated controls (p<0.05 for all comparisons). No significant changes in the OPG levels were noted. Conclusions: While many lymphoma patients may suffer from bone loss due to advanced age and glucocorticoid administration, our data suggest additional favorable effect of anti-CD20 treatment in bone preservation. Importantly, our murine studies indicate that B cell depletion has a direct effect on bone remodeling, primarily by reducing the osteoclastogenic signals, thus potentially diminishing bone resorption. This novel unrecognized effect should be taken into consideration when maintenance treatment is considered. MM and DN contributed equally to this work. Figure Disclosures No relevant conflicts of interest to declare.
Background: Femoral anteversion is a major contributor to functionality of the hip joint and is implicated in many joint pathologies. Accurate determination of component version intraoperatively is a technically challenging process that relies on the visual estimation of the surgeon. The following study aimed to examine whether the walls of the femoral neck can be used as appropriate landmarks to ensure appropriate femoral prosthesis version intraoperatively. Methods: We conducted a retrospective study based on 32 patients (64 hips) admitted to our centre between July and September 2020 who had undergone a CT scan of their lower limbs. Through radiological imaging analysis, the following measurements were performed bilaterally for each patient: anterior wall version, posterior wall version, and mid-neck femoral version. Anterior and posterior wall version were compared and evaluated relative to mid-neck version, which represented the true version value. Results: Mean anterior wall anteversion was 20° (95% CI, 17.6–22.8°) and mean posterior wall anteversion was −12° (95% CI, −15 to −9.7°). The anterior walls of the femoral neck had a constant of −7 and a coefficient of 0.9 (95% CI, −9.8 to −4.2; p < 0.0001; R2 0.77). The posterior walls of the femoral neck had a constant of 20 and a coefficient of 0.7 (95% CI, 17.8–22.5; p < 0.0001; R2 0.60). Conclusions: Surgeons can accurately obtain femoral anteversion by subtracting 7° from the angle taken between the anterior wall and the posterior femoral condyles or by adding 20° to the angle taken between the posterior wall and the posterior femoral condyles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.