Purpose: Cryotherapy of localized prostate, renal, and hepatic primary tumors and metastases is considered a minimally invasive treatment demonstrating a low complication rate in comparison with conventional surgery. The main drawback of cryotherapy is that it has no systemic effect on distant metastases. We investigated whether intratumoral injections of dendritic cells following cryotherapy of local tumors (cryoimmunotherapy) provides an improved approach to cancer treatment, combining local tumor destruction and systemic anticancer immunity. Experimental Designs: The 3LL murine Lewis lung carcinoma clone D122 and the ovalbumintransfected B16 melanoma clone MO5 served as models for spontaneous metastasis. The antimetastatic effect of cryoimmunotherapy was assessed in the lung carcinoma model by monitoring mouse survival, lung weight, and induction of tumor-specific CTLs. The mechanism of cryoimmunotherapy was elucidated in the melanoma model using adoptive transfer of T cell receptor transgenic OT-I CTLs into the tumor-bearing mice, and analysis of Th1/Th2 responses by intracellular cytokine staining in CD4 and CD8 cells. Results: Cryoimmunotherapy caused robust and tumor-specific CTL responses, increased Th1 responses, significantly prolonged survival and dramatically reduced lung metastasis. Although intratumor administration of dendritic cells alone increased the proliferation rate of CD8 cells, only cryoimmunotherapy resulted in the generation of effector memory cells. Furthermore, cryoimmunotherapy protected mice that had survived primary MO5 tumors from rechallenge with parental tumors. Conclusions: These results present cryoimmunotherapy as a novel approach for systemic treatment of cancer. We envisage that cryotherapy of tumors combined with subsequent in situ immunotherapy by autologous unmodified immature dendritic cells can be applied in practice.Minimally invasive therapies are an alternative approach to surgical intervention in the treatment of malignant diseases. Cryoablation, i.e., tissue destruction by repeated deep freezing and thawing, is under the larger category of thermal therapy and, during the past decade, it has become an acceptable clinical tool for the management of dermatologic tumors, hepatocellular carcinoma, renal and prostate tumors, and hepatic colorectal metastases (1, 2). Compared with surgical excision, the main advantages are the potential for less invasiveness resulting in reduced mortality and morbidity, and the ability to perform ablative procedures on outpatients, which decreases the treatment cost. In the case of hepatic colorectal metastases, the use of cryosurgery improves the percentages of resectability (2). A comparative study on domestic pigs showed that the cryoablation of renal parenchyma is beneficial over other necrosis-inducing ablations such as microwave thermoablation, radiofrequency energy, and chemoablation by ethanol, hypertonic saline, and acetic acid gels, in terms of reproducibility, consistency in size and shape, and the ability to monitor b...
Specific immunotherapy of prostate cancer may be an alternative or be complementary to other approaches for treatment of recurrent or metastasized disease. This study aims at identifying and characterizing prostate cancerassociated peptides capable of eliciting specific CTL responses in vivo. Evaluation of peptide-induced CTL activity in vitro was done following immunization of HLA-A2 transgenic (HHD) mice. An in vivo tumor rejection was tested by adoptive transfer of HHD immune lymphocytes to nude mice bearing human tumors. To confirm the existence of peptide-specific CTL precursors in human, lymphocytes from healthy and prostate cancer individuals were stimulated in vitro in the presence of these peptides and CTL activities were assayed. Two novel immunogenic peptides derived from overexpressed prostate antigens, prostatic acid phosphatase (PAP) and sixtransmembrane epithelial antigen of prostate (STEAP), were identified; these peptides were designated PAP-3 and STEAP-3. Peptide-specific CTLs lysed HLA-A2.1 + LNCaP cells and inhibited tumor growth on adoptive immunotherapy. Furthermore, peptide-primed human lymphocytes derived from healthy and prostate cancer individuals lysed peptide-pulsed T2 cells and HLA-A2.1 + LNCaP cells. Based on the results presented herein, PAP-3 and STEAP-3 are naturally processed CTL epitopes possessing anti-prostate cancer reactivity in vivo and therefore may constitute vaccine candidates to be investigated in clinical trials. (Cancer Res 2005; 65(14): 6435-42)
High‐dimensional mass cytometry data potentially enable a comprehensive characterization of immune cells. In order to positively affect clinical trials and translational clinical research, this advanced technology needs to demonstrate a high reproducibility of results across multiple sites for both peripheral blood mononuclear cells (PBMC) and whole blood preparations. A dry 30‐marker broad immunophenotyping panel and customized automated analysis software were recently engineered and are commercially available as the Fluidigm® Maxpar® Direct™ Immune Profiling Assay™. In this study, seven sites received whole blood and six sites received PBMC samples from single donors over a 2‐week interval. Each site labeled replicate samples and acquired data on Helios™ instruments using an assay‐specific acquisition template. All acquired sample files were then automatically analyzed by Maxpar Pathsetter™ software. A cleanup step eliminated debris, dead cells, aggregates, and normalization beads. The second step automatically enumerated 37 immune cell populations and performed label intensity assessments on all 30 markers. The inter‐site reproducibility of the 37 quantified cell populations had consistent population frequencies, with an average %CV of 14.4% for whole blood and 17.7% for PBMC. The dry reagent coupled with automated data analysis is not only convenient but also provides a high degree of reproducibility within and among multiple test sites resulting in a comprehensive yet practical solution for deep immune phenotyping.
Cytotoxic T cells (CTL) play a major role in tumor rejection. Expansion of CTLs, either by immunization or adoptive transfer, is a prominent goal in current immunotherapy. The antigen-specific nature of these expansion processes inevitably initiates a clonotypic attack on the tumor. By injecting an Ovalbumin-expressing melanoma into OT-I mice, in which >90% of CTLs recognize an Ovalbumin peptide, we show that an increased number of tumor-specific CTLs causes emergence of escape variants. We show that these escape variants are a result of antigen silencing via a yet undetermined epigenetic mechanism, which occurs frequently and is spontaneously reversible. We further show that an increase in the time of tumor onset in OT-I compared with C57BL/6J is a result of immune selection. [Cancer Res 2008;68(9):3450-7]
Highly multiplexed assays using antibody coated, fluorescent (xMap) beads are widely used to measure quantities of soluble analytes, such as cytokines and antibodies in clinical and other studies. Current analyses of these assays use methods based on standard curves that have limitations in detecting low or high abundance analytes. Here we describe SAxCyB (Significance Analysis of xMap Cytokine Beads), a method that uses fluorescence measurements of individual beads to find significant differences between experimental conditions. We show that SAxCyB outperforms conventional analysis schemes in both sensitivity (low fluorescence) and robustness (high variability) and has enabled us to find many new differentially expressed cytokines in published studies.ELISA | Luminex | algorithm | sandwich immunoassay | ANOVA I n recent years the xMap bead technology (1) has made possible high throughput analysis of various analytes, especially cytokines. These assays allow simultaneous analysis of more than 50 different cytokines in small sample volumes. The focus of the present work is on analysis of these cytokine assays. The xMap bead is the solid phase of a sandwich immunoassay. The analyte is classified through a two-color barcode embedded in the bead and the abundance of the analyte on the bead is determined by the fluorescence of the dye phycoerythrin coupled to the detection antibodies. Measured levels of fluorescence from the known cytokine dilutions are used to create standard curves. These four or five parameter logistic curves are used to estimate the concentrations of analytes given their median fluorescence intensity (MFI) values.Currently statistical analysis of xMap cytokine assays relies on repeat wells done in the assay and point estimators, usually the concentrations transformed from the MFIs, for each analyte within each well. This approach works well when a large difference exists and where coefficients of variation are fairly small. However, it is the nature of screening assays that many analytes have low fluorescence values and are therefore often reported as undetected. These undetected values lead to gaps in the assay results and frequent inaccuracies in estimates of analyte concentration.We present here a unique statistical approach for the analysis of xMap cytokine data. Given the fluorescence of individual beads, we chose not to map the observed fluorescence to the unknown concentration level, as it adds uncertainty. Instead, we focused on a direct statistical analysis of fluorescence intensities (FIs). The use of individual bead fluorescence, as opposed to any summary number, enables analysis of low signal or poor quality data and allows more power to testing differences in analytes. The methodology, which we refer to as Statistical Analysis of xMap Cytokine Beads (SAxCyB), is a linear regression model designed to find significant differences between multiple conditions (see schematic in Fig. 1A). In the model, repeat wells of a common condition are combined after adjusting differences. Conditions ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.