We present a new algorithm for a robust family of Earth
Abstract. We present a new metric between histograms such as SIFT descriptors and a linear time algorithm for its computation. It is common practice to use the L2 metric for comparing SIFT descriptors. This practice assumes that SIFT bins are aligned, an assumption which is often not correct due to quantization, distortion, occlusion etc. In this paper we present a new Earth Mover's Distance (EMD) variant. We show that it is a metric (unlike the original EMD [1] which is a metric only for normalized histograms). Moreover, it is a natural extension of the L1 metric. Second, we propose a linear time algorithm for the computation of the EMD variant, with a robust ground distance for oriented gradients. Finally, extensive experimental results on the Mikolajczyk and Schmid dataset [2] show that our method outperforms state of the art distances.
Abstract. We present a new histogram distance family, the Quadratic-Chi (QC). QC members are Quadratic-Form distances with a cross-bin χ 2 -like normalization. The cross-bin χ 2 -like normalization reduces the effect of large bins having undo influence. Normalization was shown to be helpful in many cases, where the χ 2 histogram distance outperformed the L2 norm. However, χ 2 is sensitive to quantization effects, such as caused by light changes, shape deformations etc. The Quadratic-Form part of QC members takes care of cross-bin relationships (e.g. red and orange), alleviating the quantization problem. We present two new crossbin histogram distance properties: Similarity-Matrix-Quantization-Invariance and Sparseness-Invariance and show that QC distances have these properties. We also show that experimentally they boost performance. QC distances computation time complexity is linear in the number of non-zero entries in the bin-similarity matrix and histograms and it can easily be parallelized. We present results for image retrieval using the Scale Invariant Feature Transform (SIFT) and color image descriptors. In addition, we present results for shape classification using Shape Context (SC) and Inner Distance Shape Context (IDSC). We show that the new QC members outperform state of the art distances for these tasks, while having a short running time. The experimental results show that both the cross-bin property and the normalization are important.
Abstract-This paper describes a method for robust real time pattern matching. We first introduce a family of image distance measures, the "Image Hamming Distance Family". Members of this family are robust to occlusion, small geometrical transforms, light changes and nonrigid deformations. We then present a novel Bayesian framework for sequential hypothesis testing on finite populations. Based on this framework, we design an optimal rejection/acceptance sampling algorithm. This algorithm quickly determines whether two images are similar with respect to a member of the Image Hamming Distance Family. We also present a fast framework that designs a near-optimal sampling algorithm. Extensive experimental results show that the sequential sampling algorithm performance is excellent. Implemented on a Pentium 4 3GHz processor, detection of a pattern with 2197 pixels, in 640x480 pixel frames, where in each frame the pattern rotated and was highly occluded, proceeds at only 0.022 seconds per frame.
Desktops and laptops can be maliciously exploited to violate privacy. There are two main types of attack scenarios: active and passive. In this paper, we consider the passive scenario where the adversary does not interact actively with the device, but he is able to eavesdrop on the network traffic of the device from the network side. Most of the Internet traffic is encrypted and thus passive attacks are challenging. Previous research has shown that information can be extracted from encrypted multimedia streams. This includes video title classification of non HTTP adaptive streams (non-HAS). This paper presents an algorithm for encrypted HTTP adaptive video streaming title clas- sification. We show that an external attacker can identify the video title from video HTTP adaptive streams (HAS) sites such as YouTube. To the best of our knowledge, this is the first work that shows this. We provide a large data set of 10000 YouTube video streams of 100 popular video titles (each title downloaded 100 times) as examples for this task. The dataset was collected under real-world network conditions. We present several machine algorithms for the task and run a through set of experiments, which shows that our classification accuracy is more than 95%. We also show that our algorithms are able to classify video titles that are not in the training set as unknown and some of the algorithms are also able to eliminate false prediction of video titles and instead report unknown. Finally, we evaluate our algorithms robustness to delays and packet losses at test time and show that a solution that uses SVM is the most robust against these changes given enough training data. We provide the dataset and the crawler for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.