The excitotoxic conopeptide iota-RXIA induces repetitive action potentials in frog motor axons and seizures upon intracranial injection into mice. We recently discovered that iota-RXIA shifts the voltage-dependence of activation of voltage-gated sodium channel Na(V)1.6 to a more hyperpolarized level. Here, we performed voltage-clamp experiments to examine its activity against rodent Na(V)1.1 through Na(V)1.7 co-expressed with the beta1 subunit in Xenopus oocytes and Na(V)1.8 in dissociated mouse DRG neurons. The order of sensitivity to iota-RXIA was Na(V)1.6 > 1.2 > 1.7, and the remaining subtypes were insensitive. The time course of iota-RXIA-activity on Na(V)1.6 during exposure to different peptide concentrations were well fit by single-exponential curves that provided k(obs). The plot of k(obs)versus [iota-RXIA] was linear, consistent with a bimolecular reaction with a K(d) of approximately 3 microM, close to the steady-state EC(50) of approximately 2 microM. iota-RXIA has an unusual residue, D-Phe, and the analog with an L-Phe instead, iota-RXIA[L-Phe44], had a two-fold lower affinity and two-fold faster off-rate than iota-RXIA on Na(V)1.6 and furthermore was inactive on Na(V)1.2. iota-RXIA induced repetitive action potentials in mouse sciatic nerve with conduction velocities of both A- and C-fibers, consistent with the presence of Na(V)1.6 at nodes of Ranvier as well as in unmyelinated axons. Sixteen peptides homologous to iota-RXIA have been identified from a single species of Conus, so these peptides represent a rich family of novel sodium channel-targeting ligands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.