Signals provided by the ElectroEncephaloGraphy (EEG) are widely used in Brain-Computer Interface (BCI) applications. They can be further analyzed and used for thinking activity recognition. In this paper we proposed an algorithm that is able to recognize five mental tasks using 6 channel EEG data. The main idea is to separate the raw EEG signals into several frames and compute their spectrums. Next, a second-order derivative of Gaussian is applied to extract features and an optimum Gaussian kernel parameters grid search is performed with the help of cross-validation. The extracted features are further reduced by Principal Component Analysis. The processed data is utilized to train SVM classifier which is used for mental tasks recognition afterwards. The performance of the algorithm is estimated on publically available dataset. In terms of 5 folds cross-validation we obtained an average of 82.7% recognition rate (accuracy). Additional experiments were conducted using leave-one-out cross-validation where 67.2% correct classification was reported. Comparison to several state-of-the art methods reveals the advantages of the proposed algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.