The pyrolysis of wheat straw in order to produce biochar for soil amendment is a potential strategy for producing environmental friendly fertilizers capable of boosting soil fertility, increasing carbon storage, and lowering greenhouse gas emissions. However, straw biochar’s potential to influence these aspects may vary depending on its properties. Our study sought to investigate biochar from wheat straw from three different regions in Bulgaria. A specially designed set up was used for the biochar production. Three pyrolytic temperatures (300, 400, and 500 °C) were applied, resulting in nine biochar samples. The specific characteristics included moisture content, volatile substances content, ash content, fixed carbon content, and joint ash and carbon content, and they were determined for each sample. The chemical content, resulting in 17 chemical elements and compounds, was measured and analysed. The results obtained showed that the produced straw biochar has the potential to be used as a fertilizer and soil supplement.
The present study aimed at utilizing technically hydrolyzed lignin (THL), industrial biomass residue, derived in high-temperature diluted sulfuric acid hydrolysis of softwood and hardwood chips to sugars. The THL was carbonized in a horizontal tube furnace at atmospheric pressure, in inert atmosphere and at three different temperatures (500, 600, and 700 °C). Biochar chemical composition was investigated along with its HHV, thermal stability (thermogravimetric analysis), and textural properties. Surface area and pore volume were measured with nitrogen physisorption analysis often named upon Brunauer–Emmett–Teller (BET). Increasing the carbonization temperature reduced volatile organic compounds (40 ÷ 96 wt. %), increased fixed carbon (2.11 to 3.68 times the wt. % of fixed carbon in THL), ash, and C-content. Moreover, H and O were reduced, while N- and S-content were below the detection limit. This suggested biochar application as solid biofuel. The biochar Fourier-transform infrared (FTIR) spectra revealed that the functional groups were gradually lost, thus forming materials having merely polycyclic aromatic structures and high condensation rate. The biochar obtained at 600 and 700 °C proved having properties typical for microporous adsorbents, suitable for selective adsorption purposes. Based on the latest observations, another biochar application was proposed—as a catalyst.
The present study aimed at utilizing technically hydrolyzed lignin (THL), industrial biomass residue, derived in high-temperature diluted sulphuric acid hydrolysis of softwood and hardwood chips to sugars. The THL was carbonized in horizontal tube furnace at atmospheric pressure, in inert atmosphere and at three different temperatures (500, 600 and 700 ºC). Biochar chemical composition was investigated along with its HHV, thermal stability (thermogravimetric analysis) and textural properties. Surface area and pore volume were measured with nitrogen physisorption analysis often named upon Brunauer–Emmett–Teller (BET). Increasing the carbonization temperature reduced volatile organic compounds (40 ÷ 96 wt. %), increased fixed carbon (2.11 to 3.68 times the wt. % of fixed carbon in THL), ash and C-content. Moreover, H and O were reduced, while N- and S-content were below the detection limit. This suggested biochar application as solid biofuel. The biochar Fourier-transform infrared (FTIR) spectra revealed that the functional groups were gradually lost thus, forming materials having merely polycyclic aromatic structures and high condensation rate. The biochar obtained at 600 and 700 ºC proved having properties typical for microporous adsorbents, suitable for selective adsorption purposes. Based on the latest observations another biochar application was proposed - as catalyst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.