Effects of moisture content (MC) were investigated for the mechanical properties of oak wood (Quercus petraea Liebl.) using micro-size test specimens. The micro-size specimens for bending, tensile, and compression tests were prepared and divided into five groups. Each group was conditioned at a different relative humidity and temperature to achieve MC values of 8%, 12%, 16%, 20%, and above-fiber-saturation-point MCs. After conditioning, the bending strength, modulus of elasticity (MOE) in bending, tensile strength, and compression strength values were determined. The results showed that MC had statistically significant effects on all the measured mechanical properties in the micro-size oak wood samples. The greatest decrease was observed for the compression strength, while the lowest decrease was observed for the tensile strength, when MC increased. The changing rates induced by 1% MC were calculated as 3% for bending strength, 2.5% for the MOE, 2.0% for the tensile strength, and 3.1% for the compression strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.