Among the stainless steels, the most widely used group is austenitic stainless steels. The prominent reason why austenitic stainless steels are preferred in welded stainless steel fabrications is their good weldability. AISI/SAE 304L austenitic stainless steels exhibit adequate corrosion resistance in oxidizing environments. AISI/SAE 304L austenitic stainless steels are also used in filling interfaces of runners between the Tri-Nitro-Toluen filling vessel and ammunitions in defense industry. For the manufacture of the runners, the stainless steel plates and the stainless steel pipes are mainly joined by fusion welding. These runners are cleaned with hot tapping water at 70°C after each filling of ammunitions by TNT so that cleaning operation can deteriorate the corrosion properties of runners especially weld zones. Austenitic stainless steel weldments include basically delta-ferrite and austenite phases on weld regions. Delta ferrite phase exhibits resistance to chloride bearing medias while austenite phase is more resistive to high temperature oxidizing ambients In this study; 3 mm thick 304L austenitic stainless steel plates and rings are welded to each other with two different filler weld wires of ER316L and ER2209 by Tungsten Inert Gas welding method under pure argon shielding gas. Weld metals and heataffected zones of welded joints were examined using optical metallurgical microscope. It has been determined that the additional filler weld wires have changed the weld metal and the heat affected zone microstructures and phase distributions dominantly. Microstructures of all welded joints have been compared. Besides, phase distributions of weld metals and heat effected zones are made by image analysis software and Schaefflers diagram. ER2209 welding filler metal increased the phase fraction of delta-ferrite in weld metals while it decreased the austenite phase fraction as compared to ER316L filler metal.
Austenitic stainless steels are mainly preferred especially for resistance to aggressive oxidizing medias and high temperature applications such as equipments and mechanical parts which are used in defense and conventional industries. In this study; 3 mm thick 304L austenitic stainless steel sheets and rings are joined to each other by using Tungsten Inert Gas welding method under pure argon shielding gas with ER316L and ER2209 filler metals. Weld metals and heat-affected zones of welded joints were examined by metallurgical and scanning electron microscopes. Microhardness, tensile and Charpy impact tests of weld regions are investigated. It has been determined that the filler metals have dominantly changed the microstructure of weld metals. The microhardness values of the welded samples joined with ER2209 filler metal was lower than the sample joined with ER316L filler metal in weld metal regions. Besides, corrosion tests indicated that the corrosion rates of welded samples joined with ER2209 filler metal is lower than the samples joined with ER316L filler metal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.