Two proteases produced by the SARS-CoV-2 virus, the main protease and papain-like protease, are essential for viral replication and have become the focus of drug development programs for treatment of COVID-19. We screened a highly focused library of compounds containing covalent warheads designed to target cysteine proteases to identify new lead scaffolds for both M pro and PL pro proteases. These efforts identified a small number of hits for the M pro protease and no viable hits for the PL pro protease. Of the M pro hits identified as inhibitors of the purified recombinant protease, only two compounds inhibited viral infectivity in cellular infection assays. However, we observed a substantial drop in antiviral potency upon expression of TMPRSS2, a transmembrane serine protease that acts in an alternative viral entry pathway to the lysosomal cathepsins. This loss of potency is explained by the fact that our lead M pro inhibitors are also potent inhibitors of host cell cysteine cathepsins. To determine if this is a general property of M pro inhibitors, we evaluated several recently reported compounds and found that they are also effective inhibitors of purified human cathepsins L and B and showed similar loss in activity in cells expressing TMPRSS2. Our results highlight the challenges of targeting M pro and PL pro proteases and demonstrate the need to carefully assess selectivity of SARS-CoV-2 protease inhibitors to prevent clinical advancement of compounds that function through inhibition of a redundant viral entry pathway.
Two proteases produced by the SARS-CoV-2 virus, Mpro and PLpro, are essential for viral replication and have become the focus of drug development programs for treatment of COVID-19. We screened a highly focused library of compounds containing covalent warheads designed to target cysteine proteases to identify new lead scaffolds for both Mpro and PLpro proteases. These efforts identified a small number of hits for the Mpro protease and no viable hits for the PLpro protease. Of the Mpro hits identified as inhibitors of the purified recombinant protease, only two compounds inhibited viral infectivity in cellular infection assays. However, we observed a substantial drop in antiviral potency upon expression of TMPRSS2, a transmembrane serine protease that acts in an alternative viral entry pathway to the lysosomal cathepsins. This loss of potency is explained by the fact that our lead Mpro inhibitors are also potent inhibitors of host cell cysteine cathepsins. To determine if this is a general property of Mpro inhibitors, we evaluated several recently reported compounds and found that they are also effective inhibitors of purified human cathepsin L and B and showed similar loss in activity in cells expressing TMPRSS2. Our results highlight the challenges of targeting Mpro and PLpro proteases and demonstrate the need to carefully assess selectivity of SARS-CoV-2 protease inhibitors to prevent clinical advancement of compounds that function through inhibition of a redundant viral entry pathway.
Dipeptidyl peptidases 8 and 9 (DPP8/9) have gathered interest as drug targets due to their important roles in biological processes like immunity and tumorigenesis. Elucidation of their distinct individual functions remains an ongoing task and could benefit from the availability of novel, chemically diverse and selective chemical tools. Here, we report the activity‐based protein profiling (ABPP)‐mediated discovery of 4‐oxo‐β‐lactams as potent, non‐substrate‐like nanomolar DPP8/9 inhibitors. X‐ray crystallographic structures revealed different ligand binding modes for DPP8 and DPP9, including an unprecedented targeting of an extended S2′ (eS2′) subsite in DPP8. Biological assays confirmed inhibition at both target and cellular levels. Altogether, our integrated chemical proteomics and structure‐guided small molecule design approach led to novel DPP8/9 inhibitors with alternative molecular inhibition mechanisms, delivering the highest selectivity index reported to date.
N‐terminal sequences are important sites for post‐translational modifications that alter protein localization, activity, and stability. Dipeptidyl peptidase 9 (DPP9) is a serine aminopeptidase with the rare ability to cleave off N‐terminal dipeptides with imino acid proline in the second position. Here, we identify the tumor‐suppressor BRCA2 as a DPP9 substrate and show this interaction to be induced by DNA damage. We present crystallographic structures documenting intracrystalline enzymatic activity of DPP9, with the N‐terminal Met1‐Pro2 of a BRCA21‐40 peptide captured in its active site. Intriguingly, DPP9‐depleted cells are hypersensitive to genotoxic agents and are impaired in the repair of DNA double‐strand breaks by homologous recombination. Mechanistically, DPP9 targets BRCA2 for degradation and promotes the formation of RAD51 foci, the downstream function of BRCA2. N‐terminal truncation mutants of BRCA2 that mimic a DPP9 product phenocopy reduced BRCA2 stability and rescue RAD51 foci formation in DPP9‐deficient cells. Taken together, we present DPP9 as a regulator of BRCA2 stability and propose that by fine‐tuning the cellular concentrations of BRCA2, DPP9 alters the BRCA2 interactome, providing a possible explanation for DPP9's role in cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.