Today's wireless networks allocate radio resources to users based on the orthogonal multiple access (OMA) principle. However, as the number of users increases, OMA based approaches may not meet the stringent emerging requirements including very high spectral efficiency, very low latency, and massive device connectivity. Nonorthogonal multiple access (NOMA) principle emerges as a solution to improve the spectral efficiency while allowing some degree of multiple access interference at receivers. In this tutorial style paper, we target providing a unified model for NOMA, including uplink and downlink transmissions, along with the extensions to multiple input multiple output and cooperative communication scenarios. Through numerical examples, we compare the performances of OMA and NOMA networks. Implementation aspects and open issues are also detailed.
CitationAnsari IS, Yilmaz F, Alouini M-S, Kucur O (2012) On the sum of gamma random variates with application to the performance of maximal ratio combining over Nakagamim fading channels. Abstract-The probability distribution function (PDF) and cumulative density function of the sum of L independent but not necessarily identically distributed gamma variates, applicable to maximal ratio combining receiver outputs or in other words applicable to the performance analysis of diversity combining receivers operating over Nakagami-m fading channels, is presented in closed form in terms of Meijer G-function and FoxH-function for integer valued fading parameters and noninteger valued fading parameters, respectively. Further analysis, particularly on bit error rate via PDF-based approach, too is represented in closed form in terms of Meijer G-function and Fox H-function for integer-order fading parameters, and extended FoxH-function (Ĥ) for non-integer-order fading parameters. The proposed results complement previous results that are either evolved in closed-form, or expressed in terms of infinite sums or higher order derivatives of the fading parameter m.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.