We address a vendor-managed inventory-routing problem where a supplier (vendor) receives a given amount of a single product each period and distributes it to multiple retailers over a finite time horizon using a capacitated vehicle. Each retailer faces external dynamic demand and is controlled by a deterministic order-up-to level policy requiring that the supplier raise the retailer's inventory level to a predetermined maximum in each replenishment. The problem is deciding on when and in what sequence to visit the retailers such that systemwide inventory holding and routing costs are minimized. We propose a branch-and-cut algorithm and a heuristic based on an a priori tour using a strong formulation. To the best of our knowledge, this study is the first to consider a strong formulation for the inventory replenishment part of inventory-routing problems. Computational results reveal that the new branch-and-cut algorithm and heuristic perform better than those noted in the literature.
This paper introduces a robust inventory routing problem where a supplier distributes a single product to multiple customers facing dynamic uncertain demands over a finite discrete time horizon. The probability distribution of the uncertain demand at each customer is not fully specified. The only available information is that these demands are independent and symmetric random variables which can take some value from their support interval. The supplier is responsible for the inventory management of its customers, has sufficient inventory to replenish the customers, and distributes the product using a capacitated vehicle. Backlogging of the demand at customers is allowed. The problem is to determine the delivery quantities as well as the times and routes to the customers while ensuring feasibility regardless of the realized demands and minimizing the total cost composed of transportation, inventory holding and shortage costs. Using a robust optimization approach, we propose two robust mixed integer programming (MIP) formulations for the problem. We also propose a new MIP formulation for the deterministic (nominal) case of the problem. We implement these formulations within a branch-and-cut algorithm and report results on a set of instances adapted from the literature.History :
We consider the one-warehouse multi-retailer problem where a warehouse replenishes multiple retailers with deterministic dynamic demands over a horizon. The problem is to determine when and how much to order to the warehouse and retailers such that the total system-wide costs are minimized. We propose a new (combined transportation and shortest path based) integer programming reformulation for the problem in addition to the echelon stock and transportation based formulations in the literature. We analyze the strength of the LP relaxations of three formulations and show that the new formulation is stronger than others. We also show that the new and transportation based formulations are equivalent for the joint replenishment problem, where the warehouse is a crossdocking facility. We extend all formulations to the case with initial inventory at the warehouse and reveal the relation among their LP relaxations. We present our computational experiments with all formulations over a set of randomly generated test instances.
This study considers a basic inventory management problem with nonzero fixed order costs under interval demand uncertainty. The existing robust formulations obtained by applying well-known robust optimization methodologies become computationally intractable for large problem instances due to the presence of binary variables. This study resolves this intractability issue by proposing a new robust formulation that is shown to be solvable in polynomial time when the initial inventory is zero or negative. Because of the computational efficiency of the new robust formulation, it is implemented on a folding-horizon basis, leading to a new heuristic for the problem. The computational results reveal that the new heuristic is not only superior to the other formulations regarding the computing time needed, but also outperforms the existing robust formulations in terms of the actual cost savings on the larger instances. They also show that the actual cost savings yielded by the new heuristic are close to a lower bound on the optimal expected cost. Data, as supplemental material, are available at http://dx.doi.org/10.1287/mnsc.2015.2183 . This paper was accepted by Dimitris Bertsimas, optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.