We investigate nonlinear regression for nonstationary sequential data. In most real-life applications such as business domains including finance, retail, energy, and economy, time series data exhibit nonstationarity due to the temporally varying dynamics of the underlying system. We introduce a novel recurrent neural network (RNN) architecture, which adaptively switches between internal regimes in a Markovian way to model the nonstationary nature of the given data. Our model, Markovian RNN employs a hidden Markov model (HMM) for regime transitions, where each regime controls hidden state transitions of the recurrent cell independently. We jointly optimize the whole network in an end-to-end fashion. We demonstrate the significant performance gains compared to conventional methods such as Markov Switching ARIMA, RNN variants and recent statistical and deep learning-based methods through an extensive set of experiments with synthetic and real-life datasets. We also interpret the inferred parameters and regime belief values to analyze the underlying dynamics of the given sequences.
We investigate nonlinear regression for nonstationary sequential data. In most real-life applications such as business domains including finance, retail, energy and economy, timeseries data exhibits nonstationarity due to the temporally varying dynamics of the underlying system. We introduce a novel recurrent neural network (RNN) architecture, which adaptively switches between internal regimes in a Markovian way to model the nonstationary nature of the given data. Our model, Markovian RNN employs a hidden Markov model (HMM) for regime transitions, where each regime controls hidden state transitions of the recurrent cell independently. We jointly optimize the whole network in an end-to-end fashion. We demonstrate the significant performance gains compared to vanilla RNN and conventional methods such as Markov Switching ARIMA through an extensive set of experiments with synthetic and real-life datasets. We also interpret the inferred parameters and regime belief values to analyze the underlying dynamics of the given sequences.
We study the spatiotemporal prediction problem and introduce a novel point-process-based prediction algorithm. Spatiotemporal prediction is extensively studied in machine learning literature due to its critical real-life applications, such as crime, earthquake, and social event prediction. Despite these thorough studies, specific problems inherent to the application domain are not yet fully explored. Here, we address the nonstationary spatiotemporal prediction problem on both densely and sparsely distributed sequences. We introduce a probabilistic approach that partitions the spatial domain into subregions and models the event arrivals in each region with interacting point processes. Our algorithm can jointly learn the spatial partitioning and the interaction between these regions through a gradient-based optimization procedure. Finally, we demonstrate the performance of our algorithm on both simulated data and two real-life datasets. We compare our approach with baseline and state-of-the-art deep learning-based approaches, where we achieve significant performance improvements. Moreover, we also show the effect of using different parameters on the overall performance through empirical results and explain the procedure for choosing the parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.