Objective: The systemic form of pseudohypoaldosteronism type 1 (PHA1) is an autosomal recessive disorder characterized by defective sodium transport in multi-organ systems. Mutations in the genes encoding the amiloride-sensitive epithelial sodium channel, ENaC, account for genetic causes of systemic PHA1. We describe systemic PHA1 due to 4 novel variants detected in SCNN1A and SCNN1B in 3 cases from 3 unrelated consanguineous families. Patients and Methods: We evaluated the clinical presentations, biochemical and hormonal characteristics, and molecular genetic analysis results of 3 patients from 3 unrelated consanguineous families and parents from whom samples were available. Results: The ages at presentation were postnatal days 9, 10, and 5. The main presentation symptoms were vomiting, poor feeding, weakness, weight loss, and skin rash. All patients exhibited laboratory characteristics including severe hyponatremia, hyperkalemia, metabolic acidosis, elevated plasma renin, elevated aldosterone, and positive sweat tests, suggesting a diagnosis of systemic PHA1. Molecular genetic analysis revealed 2 novel pathogenic variants [c.87C>A(p.Tyr29*)/IVS9 + 1G>A (c.1346 + 1G>A)] in SCNN1Bin case 1, a novel homozygous pathogenic variant [p.His69Arg(c.206A>G] in SCNN1Ain case 2, and a homozygous one-base duplication, p.A200Gfs*6 (c.598dupG), in SCNN1A in case 3. Conclusion: PHA1 should be considered at differential diagnosis in patients presenting with hyponatremia, hyperkalemia, and metabolic acidosis. The cases in this report involving 4 novel variants will add valuable insights into the phenotype-genotype relationship and will expand the mutation database.
Objectives Hypogonadism is defined as inadequate sex hormone production due to defects in the hypothalamic-pituitary-gonadal axis. In recent years, rare single gene defects have been identified in both hypergonadotropic hypogonadism (Hh), and hypogonadotropic hypogonadism (HH) cases with no chromosomal anomalies. The aim of the present study is to investigate the underlying molecular genetic etiology and the genotype-phenotype relationship of a series of patients with Hh and HH. Methods In total, 27 HH and six Hh cases were evaluated. Clinical and laboratory features are extracted from patients’ hospital files. Whole exome sequencing (WES) analysis was performed. Results A total of 27 HH cases (15 female) (mean age: 15.8 ± 2.7 years) and six Hh patients (six females) (mean age: 14.9 ± 1.2 years) were included. In molecular genetic analysis, a pathogenic/likely pathogenic variant was identified in five (two patients from the same family) of 27 HH cases (two novel) and three of the six Hh. In HH group variants (pathogenic, likely pathogenic and variant of uncertain significance) were identified in KISS1R (n=2), PROK2 (n=1), FGFR1 (n=1), HS6ST1 (n=1), GNRH1 (n=1) genes. In the Hh group, splice-site mutations were detected in DCAF17 (n=1) and MCM9 (n=2) genes. Conclusions HH and Hh cases are genetically heterogeneous diseases due to oligogenic inheritance, incomplete penetrance, and variable expressivity. We found rare variants in CHH related genes in half of our HH cases, whereas they classified as pathogenic/likely pathogenic according to ACMG criteria in only about 15% of HH cases. Using advanced genetic analysis methods such as whole-genome sequencing and long-read sequencing may increase the mutation detection rate, which should always be associated with and expert genetic counseling to interpret the data.
<b><i>Context:</i></b> Steroid 17α-hydroxylase/17,20-lyase deficiency (17OHD) is characterized by decreased sex steroids and cortisol, and excessive mineralocorticoid action. The clinical symptoms of hypocortisolemia are subtle. <b><i>Aim:</i></b> The clinical, biochemical, and molecular characteristics of patients with 17OHD were evaluated to determine the factors influencing the time of diagnosis and the management. <b><i>Patients and Methods:</i></b> Clinical data, steroid profiles by liquid chromatography-tandem mass spectrometry, and Sanger sequencing of the <i>CYP17A1</i> gene was evaluated in 12 patients with 17OHD diagnosed between 2004 and 2020. <b><i>Results:</i></b> Median age of diagnosis was 13.9 (range: 0.04–29.5) years. Ten of 12 patients had 46,XY karyotype. Except for one boy with partial 17OHD, all patients had female external genitalia hence raised as females. The clinical presentation of 17OHD was earlier (median age: 7 years) in patients, who presented with severe hypertension, atypical genitalia, or positive family history (<i>n</i> = 6, 50%) than those without (median age: 15.3 years; <i>p</i> = 0.0005). The latter group presented with amenorrhea (<i>n</i> = 6, 50%). Steroid profile of patients uniformly showed a typical pattern of 17OHD regardless of the age at diagnosis. Serum gonadotropin concentrations were elevated in patients >12 years (<i>n</i> = 7), normal in pre-adolescents (<i>n</i> = 4), and low in a patient, who had a digenic inheritance of homozygous <i>CYP17A1</i> and <i>KISS1R</i> mutations. <b><i>Conclusions:</i></b> Early clinical presentation and diagnosis in 17OHD are associated with symptomatic hypertension in both 46,XX and 46,XY patients or inadequate virilization of external genitalia in 46,XY partial 17OHD. In the absence of these, the clinical presentation is at late pubertal ages at which time amenorrhea and elevated gonadotropins are the hints for diagnosis.
To investigate the effect of HRE (Hippophae rhamnoides extract) on oral mucositis induced in rats with MTX. Material and Methods: Experimental animals were divided into groups as healthy (HG), HRE+MTX (HMTX), and control group, which received MTX (MTXC). HMTX group received 50 mg/kg HRE while MTXC and HG groups received equivolume distilled water with gavage once a day. After one hour of HRE and distilled water administration, HMTX and MTXC groups received a single dose of oral MTX 5 mg/ TNFanimals receiving MTX, compared with HG and HMTX groups; however, these parameters were lower in the cheek and low lip tissue, and a milder damage ocurred in these tissues, compared with the tongue tissue in MTXC group. No histopathologic damage was observed in the cheek, lower lip, and tongue tissues of the rats treated with HRE. Conclusion: This synthetic drugs for prophylaxis of oral mucositis developed due to MTX.
Background Woodhouse-Sakati syndrome (WSS) (OMIM#241080) is an extremely rare multisystemic disease. Alopecia, hypogonadism, loss of hearing, hypothyroidism, diabetes mellitus (DM) and neurological disorders are the components of this syndrome. The syndrome is caused by homozygous or compound heterozygous mutations in DCAF17, and has recently been implicated in the development of both male and female gonads, thus resulting in hypogonadism. Case report A 16-year-old girl with consanguineous parents was admitted to our hospital with absence of breast development and amenorrhea. Hypogonadism was detected, in the form of hypergonadotropic hypogonadism. Whole-exome sequencing was used to identify the genetic etiology underlying the hypogonadism. A novel homozygous variant c.1091 + 1G > A was detected in DCAF17. Both parents were sequenced and identified as heterozygous for the same mutation. Conclusions We report a novel mutation detected in the DCAF17 gene and discuss the clinical findings in patients with previously reported mutations. Various manifestations of WSS, such as alopecia, endocrinological and neurological disorders, do not emerge until later in life, and therefore this situation can be challenging to diagnose particularly in pediatric cases, as in the present report. Careful attention should be paid to these additional findings, which may lead to early diagnosis and reduced genetic analysis costs, in patients with hypogonadism. In addition, there was no obvious genetic-phenotype correlation in reported cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.