ObjectivesHigh frequency oscillations (HFOs) have been proposed as a new biomarker for epileptogenic tissue. The exact characteristics of clinically relevant HFOs and their detection are still to be defined.MethodsWe propose a new method for HFO detection, which we have applied to six patient iEEGs. In a first stage, events of interest (EoIs) in the iEEG were defined by thresholds of energy and duration. To recognize HFOs among the EoIs, in a second stage the iEEG was Stockwell-transformed into the time-frequency domain, and the instantaneous power spectrum was parameterized. The parameters were optimized for HFO detection in patient 1 and tested in patients 2–5. Channels were ranked by HFO rate and those with rate above half maximum constituted the HFO area. The seizure onset zone (SOZ) served as gold standard.ResultsThe detector distinguished HFOs from artifacts and other EEG activity such as interictal epileptiform spikes. Computation took few minutes. We found HFOs with relevant power at frequencies also below the 80–500 Hz band, which is conventionally associated with HFOs. The HFO area overlapped with the SOZ with good specificity > 90% for five patients and one patient was re-operated. The performance of the detector was compared to two well-known detectors.ConclusionsCompared to methods detecting energy changes in filtered signals, our second stage - analysis in the time-frequency domain - discards spurious detections caused by artifacts or sharp epileptic activity and improves the detection of HFOs. The fast computation and reasonable accuracy hold promise for the diagnostic value of the detector.
Cerebral cavernous malformations (CCM) are prevalent cerebrovascular lesions predisposing to chronic headaches, epilepsy, and hemorrhagic stroke. Using a combination of direct sequencing and MLPA analyses, we identified 15 novel and eight previously published CCM1 (KRIT1), CCM2, and CCM3 (PDCD10) mutations. The mutation detection rate was >90% for familial cases and >60% for isolated cases with multiple malformations. Splice site mutations constituted almost 20% of all CCM mutations identified. One of these proved to be a de novo mutation of the most 3' acceptor splice site of the CCM1 gene resulting in retention of intron 19. A further mutation affected the 3' splice site of CCM2 intron 2 leading to cryptic splice site utilization in both CCM2 and its transcript variant lacking exon 2. With the exception of one in-frame deletion of CCM2 exon 2, which corresponds to the naturally occurring splice variant of CCM2 on the RNA level and is predicted to result in the omission of 58 amino acids (CCM2:p.P11_K68del), all mutations lead to the introduction of premature stop codons. To gain insight into the likely mechanisms underlying the only known CCM2 in-frame deletion, we analyzed the functional consequences of loss of CCM2 exon 2. The CCM2:p.P11_K68del protein could be expressed in cell culture and complexed with CCM3. However, its ability to interact with CCM1 and to form a CCM1/CCM2/CCM3 complex was lost. These data are in agreement with a loss-of-function mechanism for CCM mutations, uncover an N-terminal CCM2 domain required for CCM1 binding, and demonstrate full-length CCM2 as the essential core protein in the CCM1/CCM2/CCM3 complex.
Study Objectives: This prospective observational study was designed to systematically examine the effect of subthalamic deep brain stimulation (DBS) on subjective and objective sleep-wake parameters in Parkinson patients. Methods: In 50 consecutive Parkinson patients undergoing subthalamic DBS, we assessed motor symptoms, medication, the position of DBS electrodes within the subthalamic nucleus (STN), subjective sleep-wake parameters, 2-week actigraphy, video-polysomnography studies, and sleep electroencepahalogram frequency and dynamics analyses before and 6 months after surgery. Results: Subthalamic DBS improved not only motor symptoms and reduced daily intake of dopaminergic agents but also enhanced subjective sleep quality and reduced sleepiness (Epworth Sleepiness Scale: −2.1 ± 3.8, p < .001). Actigraphy recordings revealed longer bedtimes (+1:06 ± 0:51 hours, p < .001) without shifting of circadian timing. Upon polysomnography, we observed an increase in sleep efficiency (+5.2 ± 17.6%, p = .005) and deep sleep (+11.2 ± 32.2 min, p = .017) and increased accumulation of slow-wave activity over the night (+41.0 ± 80.0%, p = .005). Rapid eye movement sleep features were refractory to subthalamic DBS, and the dynamics of sleep as assessed by state space analyses did not normalize. Increased sleep efficiency was associated with active electrode contact localization more distant from the ventral margin of the left subthalamic nucleus. Conclusion: Subthalamic DBS deepens and consolidates nocturnal sleep and improves daytime wakefulness in Parkinson patients, but several outcomes suggest that it does not normalize sleep. It remains elusive whether modulated activity in the STN directly contributes to changes in sleep-wake behavior, but dorsal positioning of electrodes within the STN is linked to improved sleep-wake outcomes.
We show here that recombinant endostatin protein has a biphasic effect on the inhibition of endothelial cell migration in vitro. In tumor-bearing animals, there is a similar biphasic effect on the inhibition of tumor growth and on circulating endothelial cells after once-daily s.c. injections. This biphasic effect is revealed as a U-shaped curve in which efficacy is optimal between very low and very high doses depending on the tumor type. This result may be applicable to other inhibitors of endothelial growth and to angiogenesis. Furthermore, these results have important implications for clinicians who administer angiogenesis inhibitors for cancer or other angiogenesis-dependent diseases. When these results are taken together with two previous reports of angiogenesis inhibitors with a U-shaped dose-response, they suggest that other regulators of endothelial growth may display a similar pattern. (Cancer Res 2005; 65(23): 11044-50)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.