The objectives of this study were to investigate the levels of phytotoxicity of rice varieties to HPPD (4-hydroxy phenylpyruvate dioxygenase)-inhibiting herbicides known for their efficiency to control the sulfonylureas-resistant weed species:mestrione, benzobicyclone, and tefuryltrione. The twenty-six rice varieties (8-Japonica × Indica-type varieties and 18-Japonica-type varieties) were grown for 25 days on seedling trays and then transplanted to paddy rice fields followed by herbicide treatment i.e. standard and double doses of there respective herbicides at 5, 10, and 15 days after transplanting. Although mestrione, benzobicyclone and tefuryltrione are all HPPD-inhibiting herbicides, the phytotoxicity symptoms of the different rice varieties based on the timing of application and doses of the herbicides were significantly different. The Japonica × Indica-type varieties showed much more phytotoxicity symptoms than Japonicatype varieties in all applied herbicides. Increasing herbicidal doses of mesotrione, and an earlier application of and increasing herbicidal doses of benzobicyclon caused severe phytotoxicity symptoms. On the other hand, phytotoxicity due to tefuryltrione did not exhibit significant differences between rice varieties in either the timing of application or dose of the herbicide. Regardless of timing of application and dose of the herbicides, Hangangchalbyeo-1, Hyangmibyeo-1 and high-yield rice varieties such as Namcheonbyeo, Dasanbyeo, Areumbyeo, and Hanareumbyeo, which belong to the Japonica × Indica-type varieties, showed 5 to 8 levels of phytotoxicity symptoms including albinism, browning, detached leaf, and necrosis to mesotrione and benzobicyclon whereas only 1 to 3 levels of phytotoxicity symptoms (chlorosis, albinism, and browning) were seen with to tefuryltrione application. The Japonica-type varieties exhibited only slight 한잡초지 32(3)호. 2012년
Characteristics related to grain quality and physiochemical components such as mineral, total amino acid, free amino acid, and free sugar composition were investigated in Protox inhibitor resistanttransgenic rice (MX, PX, and AP37) and its nontransgenic counterpart (WT). Head rice, palatability, protein, and whiteness (except for MX and AP37) of milled transgenic rice were high or similar to those of the non-transgenic counterpart. Immature rice, unfilled grain, and cracked kernels (PX and AP37) of milled transgenic rice were lower than those of its non-transgenic counterpart. However, there were no significant differences in damaged grain between the transgenic rice lines and its counterpart. Potassium content in PX and copper contents in PX and AP37 were only low compared with their non-transgenic counterparts, but other mineral contents in transgenic rice lines were high or showed no significant differences compared with non-transgenic counterparts. Contents of most total amino acid composition in transgenic rice lines were high or similar to those in non-transgenic counterparts, but the content of isoleucine in AP37 was only low compared with its non-transgenic counterpart. On the other hand, free amino acid, leucine and 정 등:Protox 저해형 제초제 저항성 형질환벼와 비형질전환벼간의 미질 차이 Ⓒ 2012 Korean Society of Weed Science 26 tyrosine in PX and AP37, and total free amino acid in PX were low compared with their non-transgenic counterparts. However, the content of free amino acid in other kinds in transgenic rice lines were similar to those in their non-transgenic counterparts. Contents of sucrose in MX and PX were low compared with non-transgenic counterpars, but contents of fructose, glucose, and maltose in transgenic rice lines were high or similar compared with their non-transgenic counterparts. This results indicated that Protox genes had no negative affect on the nutritional composition of rice.
This study was conducted to predict the rice yield loss and determine the economic threshold levels for water direct seeded rice from competition of the most serious weeds, Scirpus juncoides Roxb. (bulrush) and Echinochlor crusgalli L. (barnyardgrass) in Daegu of Korea. To predict crop yield as a function of weed density used a rectangular hyperbola, and determine their economic threshold levels used the equation developed by Cousens. The rice yield loss model of S. juncoides was predicted as y = 466 / (1+0.00188x), R 2 = 0.933 and that of E. crusgalli was y = 458 / (1+0.02402x), R 2 = 0.973. In comparison of the competitiveness represented by parameter β, it was 0.001884 in S. juncoides and 0.02402 in E. crusgalli. Economic threshold calculated using Cousens' equation was negatively related to the competitiveness of weed. So that the economic threshold of S. juncoides was 13.4 and that of E. crusgalli was 1.07 plants per m 2 .
This study was conducted to find the levels of reduction in rice yield and to determine economic threshold levels as affected by densities of Scirpus planiculmis and Lindernia dubia in wet seeding rice cultivation. In wet seeding rice cultivation, yield of rice in densities of S. planiculmis (192 per m 2) and L. dubia (384 per m 2) was reduced by 43 and 22%, respectively. Relationship between rice yield and densities of weeds were predicted with these equations of Y=531.3kg/(1+0.003931x), r 2 =0.964 for S. planiculmis and Y=547.0kg/(1+0.000792x), r 2 =0.922 for L. dubia. According to Cousens' method, economic threshold densities of S. planiculmis and L. dubia were calculated by 7.2 and 34.9 per m 2 , respectively. This result indicated that yield of rice in wet seeding rice cultivation could be reduced by over economic threshold densities of S. planiculmis and L. dubia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.