In Denmark, straw is used for generating energy in power plants. However during straw combustion, potassium chloride and SO2 are released in the flue gas and through condensation and deposition processes they will result in the formation of superheater deposits rich in potassium chloride and potassium sulphate. These components give rise to varying degrees of accelerated corrosion. This paper concerns co‐firing of straw with coal to reduce the corrosion rate from straw to an acceptable level. A field investigation at Midtkraft Studstrup suspension‐fired power plant in Denmark has been undertaken where coal has been co‐fired with 10% straw and 20% straw (% energy basis) for up to approx. 3000 hours. Two types of exposure were undertaken to investigate corrosion: a) the exposure of metal rings on water/air cooled probes, and b) the exposure of a range of materials built into the existing supertheaters. A range of austenitic and ferritic steels was exposed in the steam temperature range of 520–580°C. The flue gas temperature ranged from 925–1100°C. The rate of corrosion was assessed by precision measurement of material loss and measurement of oxide thickness. Corrosion rates are lower than for 100% straw‐firing. The corrosion products and course of corrosion for the various steel types were investigated using light optical and scanning electron microscopy. Catastrophic corrosion due to potassium chloride was not observed. Instead a more modest corrosion rate due to potassium sulphate rich deposits was observed. Corrosion mechanisms include sulphidation, oxidation and hot corrosion.
The stainless steel TP347H FG is a candidate material for the final stage tubing of superheater and reheater sections of ultra supercritical boilers operated at steam temperatures up to 620 8C in the mild corrosion environments of coal-firing. A series of field tests has been conducted with the aforementioned steel in coal-fired boilers and this paper focuses on the steam oxidation behaviour for specimens tested at various metal temperatures for exposure times of 7700, 23000 and 30000 hours as investigated by light optical and scanning electron microscopy. The oxide present on the specimens is a duplex oxide, where the outer layer consists of two sub-layers, an iron oxide layer and an iron-nickel oxide layer; the inner layer is chromium rich chromium-iron-nickel oxide. Microstructure examination showed that for all these samples the varying grain size of subsurface metal affected the oxide thickness, where the larger the metal grain size, the thicker the oxidation scale. This gave the appearance of uneven inner oxides with a varying pit thickness. Comparison of the pit thickness measurement and oxide composition reveals that the oxidation rate is fast during the initial oxidation stage, but the subsequent growth of oxide from further exposure is slower due to the formation of a healing layer consisting of chromium rich oxide near original alloy grain boundaries. At a temperature region above 600 8C a thin oxide rich in chromium and manganese is sometimes formed. In addition precipitation of secondary carbides in the bulk metal also occurs at this temperature region.
Tube specimens of TP347FG were exposed in a test superheater loop in a biomass plant in Denmark. The specimens were exposed to surface metal temperatures in the range of 455 -568 8C, steam pressure of 91 bar and exposure duration of 3500 and 8700 hours. The oxide thickness and morphology was investigated using light optical and scanning electron microscopy. The oxide present on the specimens is a duplex oxide with an inner chromium rich oxide and an outer iron rich oxide. The inner oxide consisted of a primary iron chromium nickel oxide in the original alloy grain and a chromium rich oxide, "healing layer", at the grain boundaries. This gave the appearance of uneven inner oxide and it was clear that the varying subsurface grain size affected inner oxide thickness, especially after longer exposure times. Longer exposure times from 3500 to 8700 hours resulted in increased pit thickness. Comparison of pit thickness revealed that increase of temperature from 455 to 525 8C increases the oxidation rate, however a further increase in temperature did not result in thicker inner oxide presumably due to the formation of a better healing layer at grain boundaries. These results are compared with the previous paper where the pressure and temperature was higher. A thicker inner oxide is observed at the lower temperatures and pressures compared with higher temperatures and pressures. Reasons for this behaviour are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.