Abstract-The throughput of users with poor channel conditions, such as those at a cell edge, is a bottleneck in wireless systems. A major part of the power budget must be allocated to serve these users in guaranteeing their quality-of-service (QoS) requirement, hampering QoS for other users and thus compromising the system reliability. In nonorthogonal multiple access (NOMA), the message intended for a user with a poor channel condition is decoded by itself and by another user with a better channel condition. The message intended for the latter is then successively decoded by itself after canceling the interference of the former. The overall information throughput is thus improved by this particular successive decoding and interference cancellation. This paper aims to design linear precoders/beamformers for signal superposition at the base stations of NOMA multi-input multi-output multi-cellular systems to maximize the overall sum throughput subject to the users' QoS requirements, which are imposed independently on the users' channel condition. This design problem is formulated as the maximization of a highly nonlinear and nonsmooth function subject to nonconvex constraints, which is very computationally challenging. Path-following algorithms for its solution, which invoke only a simple convex problem of moderate dimension at each iteration are developed. Generating a sequence of improved points, these algorithms converge at least to a local optimum. Extensive numerical simulations are then provided to demonstrate their merit.Index Terms-Multi-user interference system, multiinput multi-output (MIMO), nonorthogonal multiple access (NOMA), nonconvex optimization, quality-of-service (QoS), successive interference cancellation (SIC), signal superposition.
We consider a full-duplex (FD) multiuser system where an FD base station (BS) is designed to simultaneously serve both downlink (DL) and uplink (UL) users in the presence of half-duplex eavesdroppers (Eves). The problem is to maximize the minimum (max-min) secrecy rate (SR) among all legitimate users, where the information signals at the FD-BS are accompanied with artificial noise to debilitate the Eves' channels. To enhance the max-min SR, a major part of the power budget should be allocated to serve the users with poor channel qualities, such as those far from the FD-BS, undermining the SR for other users, and thus compromising the SR per-user. In addition, the main obstacle in designing an FD system is due to the selfinterference (SI) and co-channel interference (CCI) among users. We therefore propose an alternative solution, where the FD-BS uses a fraction of the time block to serve near DL users and far UL users, and the remaining fractional time to serve other users. The proposed scheme mitigates the harmful effects of SI, CCI and multiuser interference, and provides system robustness. The SR optimization problem has a highly nonconcave and nonsmooth objective, subject to nonconvex constraints. For the case of perfect channel state information (CSI), we develop a low-complexity path-following algorithm, which involves only a simple convex program of moderate dimension at each iteration. We show that our path-following algorithm guarantees convergence at least to a local optimum. Then, we extend the path-following algorithm to the cases of partially known Eves' CSI, where only statistics of CSI for the Eves are known, and worst-case scenario in which Eves can employ a more advanced linear decoder. The merit of our proposed approach is further demonstrated by extensive numerical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.