The texture and microstructure in Cu/Nb added ultra low carbon steels through the different thickness layer were studied after hot rolling. It was found that the two ultra low carbon steels all show the inhomogeneity of hot rolling texture and the Cu-added ultra low carbon steel was far more inhomogeneous than Nb-added one. In the center layer, the strong α fibre, γ fibre textures and the shear textures including {001}<110>, {111}<112> were founded. Near the surface, the α fibre texture and the orientation texture caused by a typical plane-strain deformation condition of bcc metals were observed.
The present work was performed to investigate the effect of coiling temperature on the annealed texture in Cu/Nb-added ultra-low-carbon steels. The ultra-low-carbon steels were coiled at 650 and 720 o C, respectively. The result showed that the Cu-added ultra-low-carbon steel at a low coiling temperature produced a desirable annealed texture related to good formability. On the other hand, Nb-added ultra-low-carbon steel at a high coiling temperature also produced a desirable texture. This is attributed to the effect of Nb, which retards recrystallization during the coiling process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.