In the field of super resolution researchers are trying to overcome both the diffraction as well as the geometrical bounds of an imaging system. In this paper we present two recently developed approaches while one is aiming to overcome diffraction limitation and the other the geometrical bounds while using a unified spatial light modulator (SLM) based configuration.
In this paper we introduce an imaging system based on a reflective phase-only spatial light modulator (SLM) in order to perform imaging with improved geometric resolution. By using the SLM, we combine the realization of two main abilities: a lens with a tunable focus and a phase function that, after proper free-space propagation, is projected as an amplitude distribution on top of the inspected object. The first ability is related to the realization of a lens function combined with a tunable prism that yields a microscanning of the inspected object. This by itself improves the spatial sampling density. The second ability is related to a projection of a phase function that is computed using an iterative beam-shaping Gerchberg-Saxton algorithm. After the free-space propagation from the SLM toward the inspected object, an amplitude pattern is generated on top of the object. This projected pattern and a set of low-resolution images with relative shift are interlaced and, after applying the proper regularization method, a geometrically superresolved image is reconstructed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.