Neuronal cell membranes are particularly rich in gangliosides, which play important roles in brain physiology and pathology. Previously, we reported that gangliosides could act as microglial activators and are thus likely to participate in many neuronal diseases. In the present study we provide evidence that JAK-STAT inflammatory signaling mediates gangliosides-stimulated microglial activation. Both in rat primary microglia and murine BV2 microglial cells, gangliosides stimulated nuclear factor binding to GAS/ISRE elements, which are known to be STAT-binding sites. Consistent with this, gangliosides rapidly activated JAK1 and JAK2 and induced phosphorylation of STAT1 and STAT3. In addition, gangliosides increased transcription of the inflammation-associated genes inducible nitric-oxide synthase, ICAM-1, and MCP-1, which are reported to contain STAT-binding elements in their promoter regions. AG490, a JAK inhibitor, reduced induction of these genes, nuclear factor binding activity, and activation of STAT1 and -3 in gangliosides-treated microglia. AG490 also inhibited gangliosides-induced release of nitric oxide, an inflammation hallmark. Furthermore, AG490 markedly reduced activation of ERK1/2 MAPK, indicating that ERKs act downstream of JAK-STAT signaling during microglial activation. However, AG490 did not affect activation of p38 MAPK. We also report that the sialic acid residues present on gangliosides may be one of the essential components in activation of JAK-STAT signaling. The present study indicates that JAK-STAT signaling is an early event in gangliosides-induced brain inflammatory responses.
To unravel the roles of LXRs in inflammation and immunity, we examined the function of LXRs in development of IFN-gamma-mediated inflammation using cultured rat brain astrocytes. LXR ligands inhibit neither STAT1 phosphorylation nor STAT1 translocation to the nucleus but, rather, inhibit STAT1 binding to promoters and the expression of IRF1, TNFalpha, and IL-6, downstream effectors of STAT1 action. Immunoprecipitation data revealed that LXRbeta formed a trimer with PIAS1-pSTAT1, whereas LXRalpha formed a trimer with HDAC4-pSTAT1, mediated by direct ligand binding to the LXR proteins. In line with the fact that both PIAS1 and HDAC4 belong to the SUMO E3 ligase family, LXRbeta and LXRalpha were SUMO-conjugated by PIAS1 or HDAC4, respectively, and SUMOylation was blocked by transient transfection of appropriate individual siRNAs, reversing LXR-induced suppression of IRF1 and TNFalpha expression. Together, our data show that SUMOylation is required for the suppression of STAT1-dependent inflammatory responses by LXRs in IFN-gamma-stimulated brain astrocytes.
PKR, the double-stranded RNA (dsRNA)-activated serine/threonine kinase, has been implicated as an important component of host responses to infection and various situations of cellular stress. The involvement of PKR in signal transduction and regulation of transcription suggested to us that it may play an important role in lipopolysaccharide (LPS)-induced activation of STAT1 in rat brain immune cells. We found that LPS rapidly stimulated the phosphorylation of PKR within 5 min, followed by phosphorylation of STAT1 at 2 h in rat primary microglia and astrocyte. Using 2-aminopurine (2-AP), a pharmacological inhibitor of PKR, and PKR-specific short interfering RNA (siRNA), we demonstrated that activation of PKR was essential for LPS-induced activation of STAT1. Inhibition of PKR activity by 2-AP resulted in suppression not only of STAT1 phosphorylation, but also of nuclear factors binding activity to GAS/ISRE elements. 2-AP also significantly suppressed the downstream events of LPS-stimulated STAT1 phosphorylation, including STAT-mediated transcriptional responses and generation of nitric oxide, a hallmark of brain inflammation. Consistent with these results, transfection of PKR-specific siRNA markedly attenuated all the STAT1 dependent inflammatory signaling responses tested. We further revealed that activation of PKR by LPS led to the induction of IFN- through activation of NF-B, triggering the phosphorylation of STAT1 in rat brain glial cells. Taken together, these findings indicate that PKR functions as an essential modulator in LPS-induced STAT inflammatory signaling events, and provides new insight into endotoxin-induced CNS diseases following infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.