Paper waste, corn starch, and sawdust were utilized as pore generating agents to produce a porous ceramic. Kaolin clay, sodium feldspar, and 20% of pore generating agent were mixed, and the samples were formed by mold method, dried at room temperature for about 72 h and in a furnace at 115 ºC for 5 h, and then fired at 1200 ºC with a soaking time of 3 h. The samples were tested for measurement of physical and mechanical properties and the microstructure was evaluated by scanning electron microscopy and mercury intrusion porosimetry. The results showed that the sample prepared with corn starch had the highest porosity, lowest mechanical properties and permeability, and smallest pore size, while the characteristics of the sample prepared with sawdust were contrary; finally, the sample of paper waste had the highest permeability and intermediate values of other properties.
Purpose: Low density polyethylene is commonly used polymer in the industry because of its unique structure and excellent overall performance. LDPE, is relatively low mechanical properties and thermal stability can sometimes limit its application in industry. Therefore, the development of particulate reinforced polymer composites is one of the highly promising methodologies in the area of next generation engineering products. Design/methodology/approach: Nano and Micro composite from low density polyethylene LDPE reinforced with different weight fraction of carbon black particles (CB) (2, 4 and 8)% prepared by first dispersion Nano and Micro carbon black particles CB in solvent and then mixing manually with low density polyethylene LDPE pellet and blended by twin-screw extruder, the current research study the mechanical properties (tensile strength, elastic modulus,and hardness), FTIR, DSC,and thermal conductivity of prepared nano and micro composites using two methodes and the morphological properties of nano-micro composites. Findings: The tensile strength of the LDPE/CB nano and micro composites improved at 2% and 4%, respectively, and decreasing at 8%, addition of carbon black nanoparticles led to increase the tensile strength of pure low-density polyethylene from 13.536 MPa to 19.71 MPa, and then dropping to 11.03 MPa at 8% percent,while the elastic modulus of LDPE/ CB nano and miro composites shows an improvement with all percentages of CB. The results show that the mechanical properties were improved by the addition carbon black nanoparticles more than addition micro- carbon black . FTIR show that physical interaction between LDPE and carbon black. The thermal conductivity improvement from 0.33 w/m.k for pur LDPE to 0.62234 w/m.k at 2% CB microparticle content and the reduced to 0.18645 w/m.k and 0.34063 w/m.k at (4 and 8)% micro-CB respectively , The thermal conductivity of LDPE-CB nano-composites is low in general than that the LDPE-CB microcomposite. DSC result show improvement in crystallization temperature Tc, melting temperature and degree of crystallization with addition nano and micro carbon black. Morever, SEM images revealed to uniform distribution and good bonding between LDPE and CB at low percentages and the precence of some agglomeration at high CB content.Research limitations/implications: This research studied the characteristics of both nano and micro composite materials prepared by two steps: mixing CB particles with solvent and then prepared by twin extruder which can be used packaging material, but the main limitation was the uniform distribution of nano and micro CB particles within the LDPE matrix. In a further study, prepare a blend from LDPE with other materials and improve the degradation of the blend that used in packaging application. Originality/value: LDPE with nanocomposites are of great interest because of their thermal stability, increased mechanical strength, stiffness, and low gas permeability, among other properties that have made them ideal for applications in the packaging and automotive industries. LDPE reinforcements nano-sized carbon black can have better mechanical and thermal properties than micron, resulting in less material being needed for a given application at a lower cost.
Purpose: Human bone suffered some degeneration due to age and accidents; therefore, there are many interests in the prepared synthetic bone with properties nearer to natural bone. The present study prepared a nanocomposite of polypropylene reinforced with different weight fraction of Nano hydroxyapatite (HAp) to be used as a bone replacement with good biological properties that enhanced the growth of osteoplastic cells and enhance the prevention of clots and coagulates creation. Design/methodology/approach: Nanocomposite from polypropylene reinforced with different weight fraction of Hydroxyapatite (HAp) (1,2 and 3) % prepared by first dispersion Nano hydroxyapatite insolvent and then mixing with a pellet of polypropylene by the twinscrew extrusion process, the current research study the surface properties ( atomic force microscopy (AFM), contact angle test) Moreover, it studied the characteristics of prepared nanocomposite materials (Differential Scanning Calorimetry (DSC), Field Emission-Scanning Electron Microscopy (FE-SEM) and Fourier Transform Infrared (FTIR)). Findings: The AFM results show the surface roughness decreased with increasing content of HAp, which diminished the chance of creation clots and coagulates on it. The contact angle results referred to polypropylene behaviour transformed from hydrophobic to hydrophilic with addition HAp that permission to grow the osteoplastic cell on it, so the healing process is accelerated. Moreover, the FE-SEM images revealed uniform distribution and good bonding between polypropylene and Hydroxyapatite. The thermal properties were measured by the DSC test showed the melting temperature, and the enthalpy of melting (indicated to increase the crystalline structure per cent) are increased with increasing the percentage of Hydroxyapatite. Research limitations/implications: This research studied the characteristics of nanocomposite materials prepared by three steps (dispersion by ultrasonic device, manually mixed and melting and mixing by twin extruder) which can be used as a bone replacement. However, the main limitation was the uniform distribution of nano-hydroxyapatite within the matrix. In a further study, the cytotoxic test can be tested to study the effect of prepared nanocomposite on living cells’ growth. Practical implications: The interest object is how to connect among different properties to prepared bone replacement with good properties and biocompatibility that made able to stimulate the growth and healing process. Originality/value: The nano-hydroxyapatite is a biomaterial that has a composition similar to the natural mineral phase of the bone and does not have any negative effect, which enhanced the growth of osteoplastic cells and decreased the clots and coagulates creation; therefore, nano-hydroxyapatite is used to decrease the surface roughness which decreased the chance of coagulation creation and to enhance the hydrophilic properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.