Permeability is an essential parameter in reservoir characterization because it is determined hydrocarbon flow patterns and volume, for this reason, the need for accurate and inexpensive methods for predicting permeability is important. Predictive models of permeability become more attractive as a result. A Mishrif reservoir in Iraq's southeast has been chosen, and the study is based on data from four wells that penetrate the Mishrif formation. This study discusses some methods for predicting permeability. The conventional method of developing a link between permeability and porosity is one of the strategies. The second technique uses flow units and a flow zone indicator (FZI) to predict the permeability of a rock mass using data from cores and well logs. The approach is used to predict the permeability of some uncored wells/intervals. The flow zone indicator is an efficient metric for calculating hydraulic flow units since it is based on the geological properties of the material and varied geometries pore of rock mass (HFU) and Artificial Neural Network (ANN) analysis is another way for predicting permeability. The result shows the FZI method, gave acceptable results compared with the obtained from core analysis than the other methods.
Flow unit and reservoir rock type identification in carbonates are difficult due to the intricacy of pore networks caused by facies changes and diagenetic processes. On the other hand, these classifications of rock type are necessary for understanding a reservoir and predicting its production performance in the face of any activity. The current study focuses on rock type and flow unit classification for the Mishrif reservoir in Iraq's southeast and the study is based on data from five wells that penetrate it. Integration of several methods was used to determine the flow unit based on well log interpretation and petrophysical properties. The flow units were identified using the Quality Index of Rock and the Indicator of Flow Zone. The Winland correlation was used to determine the pore throat size. The Lucia classification was based on fabric rock number, and cluster analysis detects rock types using well log data within the Mishrif Formation. Four rock types have been specified by the combination of these approaches grainstone-packstone, packstone-wackestone, Wackestone-Mudstone and Mudstone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.