Renewable energies are being introduced in countries around the world to move away from the environmental impacts from fossil fuels. In the residential sector, smart buildings that utilize smart appliances, integrate information and communication technology and utilize a renewable energy source for in-house power generation are becoming popular. Accordingly, there is a need to understand what factors influence the accuracy of managing such smart buildings. Thus, this study reviews the application of machine learning prediction algorithms in Home Energy Management Systems. Various aspects are covered, such as load forecasting, household consumption prediction, rooftop solar energy generation, and price prediction. Also, a proposed Home Energy Management System framework is included based on the most accurate machine learning prediction algorithms of previous studies. This review supports research into the selection of an appropriate model for predicting energy consumption of smart buildings.
Integration of vehicle-to-home (V2H) centralized photovoltaic (HCPV) systems is a requested and potentially fruitful research topic for both industry and academia. Renewable energy sources, such as wind turbines and solar photovoltaic panels, alleviate energy deficits. Furthermore, energy storage technologies, such as batteries, thermal, and electric vehicles, are indispensable. Consequently, in this article, we examine the impact of solar photovoltaic (SPV), microgrid (MG) storage, and an electric vehicle (EV) on maximum sun radiation hours. As a result, an HCPV scheduling algorithm is developed and applied to maximize energy sustainability in a smart home (SH). The suggested algorithm can manage energy demand between the MG and SPV systems, as well as the EV as a mobile storage system. The model is based on several limitations to meet households’ electrical needs during sunny and cloudy weather. A multi-agent system (MAS) is undertaken to ensure proper system operation and meet the power requirements of various devices. An experimental database for weather and appliances is deployed to evaluate and control energy consumption and production cost parameters. The obtained results illustrate the benefits of V2H technology as a prospective unit storage solution.
These days, users consume more electricity during peak hours, and electricity prices are typically higher between 3:00 p.m. and 11:00 p.m. If electric vehicle (EV) charging occurs during the same hours, the impact on residential distribution networks increases. Thus, home energy management systems (HEMS) have been introduced to manage the energy demand among households and EVs in residential distribution networks, such as a smart micro-grid (MG). Moreover, HEMS can efficiently manage renewable energy sources, such as solar photovoltaic (PV) panels, wind turbines, and vehicle energy storage. Until now, no HEMS has intelligently coordinated the uncertainty of smart MG elements. This paper investigated the impact of PV solar power, MG storage, and EVs on the maximum solar radiation hours. Several deep learning (DL) algorithms were utilized to account for the uncertainties. A reinforcement learning home centralized photovoltaic (RL-HCPV) scheduling algorithm was developed to manage the energy demand between the smart MG elements. The RL-HCPV system was modelled according to several constraints to meet household electricity demands in sunny and cloudy weather. Additionally, simulations demonstrated how the proposed RL-HCPV system could incorporate uncertainty, and efficiently handle the demand response and how vehicle-to-home (V2H) can help to level the appliance load profile and reduce power consumption costs with sustainable power production. The results demonstrated the advantages of utilizing RL and V2H technology as potential smart building storage technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.