Background: Colorectal cancer (CRC), a major health concern, is developed depending on environmental, genetic and microbial factors. The microbiome and metabolome have been analyzed to study their role in CRC. However, the interplay of host genetics with those layers in CRC remains unclear. Methods: 120 individuals were sequenced and association analyses were carried out for adenoma and CRC risk, and for selected components of the microbiome and metabolome. The epistasis between genes located in cholesterol pathways was analyzed; modifiable risk factors were studied using Mendelian randomization; and the three omic layers were used to integrate their data and to build risk prediction models. Results: We detected genetic variants that were associated to components of metabolome or microbiome and adenoma or CRC risk (e.g., in LINC01605, PROKR2 and CCSER1 genes). In addition, we found interactions between genes of cholesterol metabolism, and HDL cholesterol levels affected adenoma (p = 0.0448) and CRC (p = 0.0148) risk. The combination of the three omic layers to build risk prediction models reached high AUC values (>0.91). Conclusions: The use of the three omic layers allowed for the finding of biological mechanisms related to the development of adenoma and CRC, and each layer provided complementary information to build risk prediction models.
Accurate diagnosis of colorectal cancer (CRC) still relies on invasive colonoscopy. Noninvasive methods are less sensitive in detecting the disease, particularly in the early stage. In the current work, a metabolomics analysis of fecal samples was carried out by ultra-high-performance liquid chromatography–tandem mass spectroscopy (UPLC-MS/MS). A total of 1380 metabolites were analyzed in a cohort of 120 fecal samples from patients with normal colonoscopy, advanced adenoma (AA) and CRC. Multivariate analysis revealed that metabolic profiles of CRC and AA patients were similar and could be clearly separated from control individuals. Among the 25 significant metabolites, sphingomyelins (SM), lactosylceramides (LacCer), secondary bile acids, polypeptides, formiminoglutamate, heme and cytidine-containing pyrimidines were found to be dysregulated in CRC patients. Supervised random forest (RF) and logistic regression algorithms were employed to build a CRC accurate predicted model consisting of the combination of hemoglobin (Hgb) and bilirubin E,E, lactosyl-N-palmitoyl-sphingosine, glycocholenate sulfate and STLVT with an accuracy, sensitivity and specificity of 91.67% (95% Confidence Interval (CI) 0.7753–0.9825), 0.7 and 1, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.