Environmental cycles often influence the presence of animals, creating patterns at different temporal scales, which may mean that their effects overlap and/or interact. Interactions between diel and seasonal cycles have been reported to influence fish behaviour but little is known about such interactions in marine top predators. Here, we studied the combined effect of seasonal, tidal and diel cycles on the occurrence of bottlenose dolphins ( Tursiops truncatus ) within a Marine Protected Area in Scotland. Our analyses were based on echolocation detections from passive acoustic devices (CPODs) deployed at three coastal sites between 2010 and 2016. We described patterns of dolphins’ occurrence using circular statistics and then used generalised additive mixed models to explore the relative importance of each cycle and any interactions between them. We found site-specific cyclical patterns of presence that remained constant across years. There was a highly significant interaction between seasonal and diel cycles at two sites around deep channels, where occurrence was diurnal in summer but became nocturnal in autumn. The study demonstrates the highly plastic behaviour of bottlenose dolphins and shows a previously unreported behaviour that has management implications for this and other marine protected areas.
With increasing numbers of offshore structures being installed and decommissioned, a better understanding of their effect on marine predators is timely. There is some evidence that oil and gas platforms may attract marine mammals, acting as artificial reefs. However, it is unclear whether different man-made structure designs have similar effects or whether artificial structures modify the diel patterns of occurrence and foraging of marine mammals. Here, we used passive acoustics to investigate the occurrence and foraging activity of harbour porpoises (Phocoena phocoena) around four artificial structures of different age and complexity. We deployed an array of echolocation click detectors (CPODs) in 2021, along a gradient of distances to these structures and assessed the extent to which porpoises were attracted to them and their effect on porpoises’ diel patterns of occurrence and foraging activity. The probability of porpoise occurrence and foraging activity decreased with distance from offshore structures. A significant increase in porpoise occurrence and foraging was detected during night-time compared to daytime around all four offshore structures (< 200 m). Comparing pre- and post-installation porpoise detections, the daily patterns of occurrence and foraging activity shifted from a weak diel pattern before the structure was installed, to a strong nocturnal pattern when the structure was present. These findings provide evidence that marine mammals are attracted to man-made structures and that porpoises modify their diel patterns of occurrence and foraging activity around them. This research suggests that offshore structures play an important role as foraging areas for some marine mammals and provides key information for decommissioning considerations and the planning of decommissioning activities.
Increasing levels of anthropogenic underwater noise have caused concern over their potential impacts on marine life. Offshore renewable energy developments and seismic exploration can produce impulsive noise which is especially hazardous for marine mammals because it can induce auditory damage at shorter distances and behavioral disturbance at longer distances. However, far-field effects of impulsive noise remain poorly understood, causing a high level of uncertainty when predicting the impacts of offshore energy developments on marine mammal populations. Here we used a 10-year dataset on the occurrence of coastal bottlenose dolphins over the period 2009–2019 to investigate far-field effects of impulsive noise from offshore activities undertaken in three different years. Activities included a 2D seismic survey and the pile installation at two offshore wind farms, 20–75 km from coastal waters known to be frequented by dolphins. We collected passive acoustic data in key coastal areas and used a Before-After Control-Impact design to investigate variation in dolphin detections in areas exposed to different levels of impulsive noise from these offshore activities. We compared dolphin detections at two temporal scales, comparing years and days with and without impulsive noise. Passive acoustic data confirmed that dolphins continued to use the impact area throughout each offshore activity period, but also provided evidence of short-term behavioral responses in this area. Unexpectedly, and only at the smallest temporal scale, a consistent increase in dolphin detections was observed at the impact sites during activities generating impulsive noise. We suggest that this increase in dolphin detections could be explained by changes in vocalization behavior. Marine mammal protection policies focus on the near-field effects of impulsive noise; however, our results emphasize the importance of investigating the far-field effects of anthropogenic disturbances to better understand the impacts of human activities on marine mammal populations.
Area-restricted search (ARS) behaviour is commonly used to characterize spatio-temporal variation in foraging activity of predators, but evidence of the drivers underlying this behaviour in marine systems is sparse. Advances in underwater sound recording techniques and automated processing of acoustic data now provide opportunities to investigate these questions where species use different vocalizations when encountering prey. Here, we used passive acoustics to investigate drivers of ARS behaviour in a population of dolphins and determined if residency in key foraging areas increased following encounters with prey. Analyses were based on two independent proxies of foraging: echolocation buzzes (widely used as foraging proxies) and bray calls (vocalizations linked to salmon predation attempts). Echolocation buzzes were extracted from echolocation data loggers and bray calls from broadband recordings by a convolutional neural network. We found a strong positive relationship between the duration of encounters and the frequency of both foraging proxies, supporting the theory that bottlenose dolphins engage in ARS behaviour in response to higher prey encounter rates. This study provides empirical evidence for one driver of ARS behaviour and demonstrates the potential for applying passive acoustic monitoring in combination with deep learning-based techniques to investigate the behaviour of vocal animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.