Conservation principles, such as conservation of charge, energy, or mass, provide a natural way to couple and constrain spatially separated variables. In this paper, we propose a dynamical system model that exploits these constraints for solving nonconvex and discrete global optimization problems. Unlike the traditional simulated annealing or quantum annealing-based global optimization techniques, the proposed method optimizes a target objective function by continuously evolving a driver functional over a conservation manifold, using a generalized variant of growth transformations. As a result, the driver functional asymptotically converges toward a Dirac-delta function that is centered at the global optimum of the target objective function. In this paper, we provide an outline of the proof of convergence for the dynamical system model and investigate different properties of the model using a benchmark nonlinear optimization problem. Also, we demonstrate how a discrete variant of the proposed dynamical system can be used for implementing decentralized optimization algorithms, where an ensemble of spatially separated entities (for example, biological cells or simple computational units) can collectively implement specific functions, such as winner-take-all and ranking, by exchanging signals only with its immediate substrate or environment. The proposed dynamical system model could potentially be used to implement continuous-time optimizers, annealers, and neural networks.
Growth transformations constitute a class of fixed-point multiplicative update algorithms that were originally proposed for optimizing polynomial and rational functions over a domain of probability measures. In this paper, we extend this framework to the domain of bounded real variables which can be applied towards optimizing the dual cost function of a generic support vector machine (SVM). The approach can, therefore, not only be used to train traditional soft-margin binary SVMs, one-class SVMs, and probabilistic SVMs but can also be used to design novel variants of SVMs with different types of convex and quasi-convex loss functions. In this paper, we propose an efficient training algorithm based on polynomial growth transforms, and compare and contrast the properties of different SVM variants using several synthetic and benchmark data sets. The preliminary experiments show that the proposed multiplicative update algorithm is more scalable and yields better convergence compared to standard quadratic and nonlinear programming solvers. While the formulation and the underlying algorithms have been validated in this paper only for SVM-based learning, the proposed approach is general and can be applied to a wide variety of optimization problems and statistical learning models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.